معرفی شرکت ها


awkward-2.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Manipulate JSON-like data with NumPy-like idioms.
ویژگی مقدار
سیستم عامل -
نام فایل awkward-2.1.4
نام awkward
نسخه کتابخانه 2.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Jim Pivarski <pivarski@princeton.edu>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/awkward/
مجوز BSD-3-Clause
<a href="https://github.com/scikit-hep/awkward-1.0"> <img src="https://github.com/scikit-hep/awkward-1.0/raw/main/docs-img/logo/logo-300px.png"> </a> [![PyPI version](https://badge.fury.io/py/awkward.svg)](https://pypi.org/project/awkward) [![Conda-Forge](https://img.shields.io/conda/vn/conda-forge/awkward)](https://github.com/conda-forge/awkward-feedstock) [![Python 3.7‒3.11](https://img.shields.io/badge/python-3.7%E2%80%923.11-blue)](https://www.python.org) [![BSD-3 Clause License](https://img.shields.io/badge/license-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) [![Build Test](https://github.com/scikit-hep/awkward/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/scikit-hep/awkward/actions/workflows/test.yml) [![Scikit-HEP](https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg)](https://scikit-hep.org/) [![NSF-1836650](https://img.shields.io/badge/NSF-1836650-blue.svg)](https://nsf.gov/awardsearch/showAward?AWD_ID=1836650) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4341376.svg)](https://doi.org/10.5281/zenodo.4341376) [![Documentation](https://img.shields.io/badge/docs-online-success)](https://awkward-array.org/) [![Gitter](https://img.shields.io/badge/chat-online-success)](https://gitter.im/Scikit-HEP/awkward-array) Awkward Array is a library for **nested, variable-sized data**, including arbitrary-length lists, records, mixed types, and missing data, using **NumPy-like idioms**. Arrays are **dynamically typed**, but operations on them are **compiled and fast**. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not. # Motivating example Given an array of lists of objects with `x`, `y` fields (with nested lists in the `y` field), ```python import awkward as ak array = ak.Array([ [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}], [], [{"x": 4.4, "y": [1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}] ]) ``` the following slices out the `y` values, drops the first element from each inner list, and runs NumPy's `np.square` function on everything that is left: ```python output = np.square(array["y", ..., 1:]) ``` The result is ```python [ [[], [4], [4, 9]], [], [[4, 9, 16], [4, 9, 16, 25]] ] ``` The equivalent using only Python is ```python output = [] for sublist in array: tmp1 = [] for record in sublist: tmp2 = [] for number in record["y"][1:]: tmp2.append(np.square(number)) tmp1.append(tmp2) output.append(tmp1) ``` The expression using Awkward Arrays is more concise, using idioms familiar from NumPy, and it also has NumPy-like performance. For a similar problem 10 million times larger than the one above (single-threaded on a 2.2 GHz processor), * the Awkward Array one-liner takes **1.5 seconds** to run and uses **2.1 GB** of memory, * the equivalent using Python lists and dicts takes **140 seconds** to run and uses **22 GB** of memory. Awkward Array is even faster when used in [Numba](https://numba.pydata.org/)'s JIT-compiled functions. See the [Getting started](https://awkward-array.org/doc/main/getting-started/index.html) documentation on [awkward-array.org](https://awkward-array.org) for an introduction, including a [no-install demo](https://awkward-array.org/doc/main/getting-started/try-awkward-array.html) you can try in your web browser. # Getting help * View the documentation on [awkward-array.org](https://awkward-array.org/). * Report bugs, request features, and ask for additional documentation on [GitHub Issues](https://github.com/scikit-hep/awkward/issues). * If you have a "How do I...?" question, start a [GitHub Discussion](https://github.com/scikit-hep/awkward/discussions) with category "Q&A". * Alternatively, ask about it on [StackOverflow with the [awkward-array] tag](https://stackoverflow.com/questions/tagged/awkward-array). Be sure to include tags for any other libraries that you use, such as Pandas or PyTorch. * To ask questions in real time, try the Gitter [Scikit-HEP/awkward-array](https://gitter.im/Scikit-HEP/awkward-array) chat room. # Installation Awkward Array can be installed from [PyPI](https://pypi.org/project/awkward) using pip: ```bash pip install awkward ``` The `awkward` package is pure Python, and it will download the `awkward-cpp` compiled components as a dependency. If there is no `awkward-cpp` binary package (wheel) for your platform and Python version, pip will attempt to compile it from source (which has additional dependencies, such as a C++ compiler). Awkward Array is also available on [conda-forge](https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge): ```bash conda install -c conda-forge awkward ```


نیازمندی

مقدار نام
- awkward-cpp==15
ython_versio importlib-resources;
- numpy>=1.17.0
- packaging
ython_versio typing-extensions>=4.1.0;


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl awkward-2.1.4:

    pip install awkward-2.1.4.whl


نصب پکیج tar.gz awkward-2.1.4:

    pip install awkward-2.1.4.tar.gz