معرفی شرکت ها


avalon-generator-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extendable scalable high-performance streaming test data generator
ویژگی مقدار
سیستم عامل -
نام فایل avalon-generator-1.1.0
نام avalon-generator
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mohammad Razavi, Mohammad Reza Moghaddas
ایمیل نویسنده mrazavi64@gmail.com
آدرس صفحه اصلی https://github.com/admirito/avalon
آدرس اینترنتی https://pypi.org/project/avalon-generator/
مجوز GPLv3+
.. This description is automatically generated from README.org file. Avalon ====== ``Avalon`` is a extendable scalable high-performance streaming data generator that can be used to simulate the real-time input for various systems. Installation ------------ To install ``avalon`` with all of its dependencies yon can use ``pip``: .. code:: shell pip install avalon-generator[all] Avalon supports a lot of command-line arguments, so you probably want to enable its `argcomplete <https://github.com/kislyuk/argcomplete>`__ support for tab completion of arguments. Just run the following command for a single use or add it to your ``~/.bashrc`` to preserve it for the future uses: .. code:: shell eval "$(avalon --completion-script=bash)" Also if you install Avalon on Ubuntu using PPA the command line auto completion will be enabled automatically. Installation on Ubuntu ~~~~~~~~~~~~~~~~~~~~~~ There is a `PPA <https://launchpad.net/~mrazavi/+archive/ubuntu/avalon>`__ for Avalon which you may prefer to use if you are using Ubuntu. You can install Avalon using the PPA with the following commands: .. code:: shell sudo add-apt-repository ppa:mrazavi/avalon sudo apt update sudo apt install avalon Usage ----- At the most simple from you can name a ``model`` as the command line argument of ``avalon`` and it will produce data for the specified model on the standard output. The following command uses the ``--textlog`` shortcut to generate logs similar to `snort <https://www.snort.org/>`__ IDS: .. code:: shell avalon snort --textlog Multiple models could be used at the same time. You can also see the available models by the following command: .. code:: shell avalon --list-models The default output format (without ``--textlog``) is ``json-lines`` which output a JSON document on each line. Other formats like ``csv`` is also supported. To see the supported formats you can use the ``--help`` argument and checkout the options for ``--output-format``, or just enable auto-complete and press <tab> key to see the available options. Besides ``--output-format``, the output media could also be specified via ``--output-media``. A lot of output mediums like ``file``, ``http``, ``grpc``, ``kafka``, direct insert on ``sql`` databases are also supported out of the box. Also, the number and the rate of the outputs could be controlled via ``--number`` and ``--rate`` arguments. For high rates, you might want to utilize your multiple CPU cores. To do so, just prefix your model name with the number of instances you want to run at the same time, e.g. ``10snort`` to run 10 ``snort`` instances (with 10 Python processes that could utilize up to 10 CPU cores). You can utilize multiple models at the same time. You can also provide a ratio for the output of each model, e.g. ``10snort1000 5asa20``. That means 10 instances of ``snort`` model and 5 instances of ``asa`` model with the ratio 1000 output for ``snort`` producers to 20 for ``asa`` producers. The other important parameter to archived high resource utilization is by increasing the batch size by ``--batch-size`` argument. Also, ``--output-writers`` argument determines the simultaneous writes to the output media. So if your sink is a ``file`` or a ``http`` server or any other forms of mediums that supports concurrent writes it is possible to provide ``--output-writers`` to tune the parallelism. Here is an example that use multiple processes to write to a CSV file, 10000 items per second. .. code:: shell # You don't need to enter --output-media=file because # Avalon will automatically infer it after you enter an # argument such as --file-name # avalon 20snort 5asa \ --batch-size=1000 --rate=10000 --number=1000000 --output-writers=25 \ --output-format=headered-csv --file-name=test.csv Avalon command line supports many more options that you could explore them via ``--help`` argument or auto-complete by pressing <tab> key in the command line. Architecture ------------ Avalon architecture consists of several abstractions that give it great flexibility: Model Each model is responsible to generate a specific kind of data. For example a model might generate data similar to logs of a specific application or appliance while another model might generate network flows or packets. Model output is usually an unlimited iteration of Python dictionaries. Mapping Mappings could transform data model for a different purpose. For example one might want to use different key names in a JSON or different column names in CSV or SQL database. You can specify a chain of multiple mappings to achieve your goal. Format Each format (or formatter) is responsible for converting a batch of model data to a specific format, e.g. JSON or CSV. Format output is usually a string or bytes array, although other types could also be used according to the output media. Media Each media is responsible for transferring the batched formatted data to a specific data sink. For example it could write data to a file or send it to a remote server via network. Generic Extension Generics, currently in Beta stage, are a brand new type of extensions that gives the user ultimate flexibility to modify input arguments or execute any tasks according to them. Extension --------- Avalon supports third-party extensions. So, you can develop your own models, formats, etc. to generate data for your specific use cases or send them to a sink that Avalon does not support out of the box. You can also publish your developed extensions publicly if you think they could benefit other users. More information is available at `EXTENSIONS.org <https://github.com/admirito/avalon/blob/master/EXTENSIONS.org>`__. Mappings ~~~~~~~~ Although developing and running an Avalon extension is as trivial as creating a specific directory structure and running ``avalon`` command with a specific ``PYTHONPATH`` environment variable, there is an even simpler method that might comes handy when you want to use a user-defined mapping. A mapping could modify the model output dictionary before being used by the formatter. Avalon supports a couple of useful mappings out of the box, but new mappings could also be defined in a simple Python script and passing the file path as a URL in the ``avalon`` command line. For example, the following script if put in a ``mymap.py`` file could be used as a mapping: .. code:: python # Any valid name for the class is acceptable. class MyMap: def map(self, item): # Item is the dictionary generated by the models # Rename "foo" key to "bar" item["bar"] = item.pop("foo", None) item["new"] = "a whole new key value" # Don't forget to reutrn the item return item **NOTE**: Despite normal extension mappings which has to inherit from a specific base class, the mappings passed as ``file://`` URLs to ``avalon`` does not have such obligations. Now, the mapping could be passed to Avalon with ``--map`` as a URL: .. code:: shell avalon --map=file:///path/to/mymap.py Avalon also supports passing multiple ``--map`` arguments and all the provided mappings will be applied in the specified order. One particular useful use-case is to define many simple mappings and combine them do achieve the desired goal. Also using curly braces you can pass a mapping to only a specific model when combining multiple models. Here is an example: .. code:: python # mymap.py will applied to the first snort, the internal jsoncolumn # mapping will be applied to asa and the last snort will be used # without any mappings. avalon "snort{file:///path/to/mymap.py} asa{jsoncolumn} snort" Etymology --------- The ``Avalan`` name is based on the name of a legendary island featured in the Arthurian legend and it has nothing to do with the proprietary `Spirent Avalanche <https://www.spirent.com/products/avalanche-security-testing>`__ traffic generator. Authors ------- - Mohammad Razavi - Mohammad Reza Moghaddas


نیازمندی

مقدار نام
- requests
- argcomplete
- suds-community
- SQLAlchemy
- psycopg2
- clickhouse-connect
- kafka-python
- grpcio-tools
- grpc-requests
- grpcio-tools
- grpc-requests
- kafka-python
- suds-community
- SQLAlchemy
- psycopg2
- clickhouse-connect


نحوه نصب


نصب پکیج whl avalon-generator-1.1.0:

    pip install avalon-generator-1.1.0.whl


نصب پکیج tar.gz avalon-generator-1.1.0:

    pip install avalon-generator-1.1.0.tar.gz