معرفی شرکت ها


autotst-1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Two-samples Testing and Distribution Shift Detection with AutoML
ویژگی مقدار
سیستم عامل -
نام فایل autotst-1.2
نام autotst
نسخه کتابخانه 1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jonas M. Kübler
ایمیل نویسنده jonas.m.kuebler@tuebingen.mpg.de
آدرس صفحه اصلی https://jmkuebler.github.io/auto-tst/
آدرس اینترنتی https://pypi.org/project/autotst/
مجوز -
# AutoML Two-Sample Test [![Checked with MyPy](https://img.shields.io/badge/mypy-checked-blue)](https://github.com/python/mypy) [![Code style: Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black) [![Tests](https://github.com/jmkuebler/auto-tst/actions/workflows/tests.yml/badge.svg)](https://github.com/jmkuebler/auto-tst/actions/workflows/tests.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI](https://img.shields.io/badge/PyPI-1.2-blue)](https://pypi.org/project/autotst/) [![Downloads](https://static.pepy.tech/personalized-badge/autotst?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads)](https://pepy.tech/project/autotst) [![arXiv](https://img.shields.io/badge/arXiv-2206.08843-b31b1b.svg)](https://arxiv.org/abs/2206.08843) `autotst` is a Python package for easy-to-use two-sample testing and distribution shift detection. Given two datasets `sample_P` and `sample_Q` drawn from distributions $P$ and $Q$, the goal is to estimate a $p$-value for the null hypothesis $P=Q$. `autotst` achieves this by learning a witness function and taking its mean discrepancy as a test statistic (see References). The package provides functionalities to prepare the data, an interface to train an ML model, and methods to evaluate $p$-values and interpret results. By default, autotst uses the Tabular Predictor of [AutoGluon](https://auto.gluon.ai/), but it is easy to wrap and use your own favorite ML framework (see below). The full documentation of the package can be found [here](https://jmkuebler.github.io/auto-tst/). ## Installation Requires at least Python 3.7. Since the installation also installs AutoGluon, it can take a few moments. ``` pip install autotst ``` ## How to use `autotst` We provide worked out examples in the 'Example' directory. In the following assume that `sample_P` and `sample_Q` are two `numpy` arrays containing samples from $P$ and $Q$. ### Default Usage: The easiest way to compute a $p$-value is to use the default settings ```python import autotst tst = autotst.AutoTST(sample_P, sample_Q) p_value = tst.p_value() ``` You would then reject the null hypothesis if `p_value` is smaller or equal to your significance level. ### Customizing the testing pipeline We highly recommend to use the pipeline step by step, which would look like this: ```python import autotst from autotst.model import AutoGluonTabularPredictor tst = autotst.AutoTST(sample_P, sample_Q, split_ratio=0.5, model=AutoGluonTabularPredictor) tst.split_data() tst.fit_witness(time_limit=60) # time limit adjustable to your needs (in seconds) p_value = tst.p_value_evaluate(permutations=10000) # control number of permutations in the estimation ``` This allows you to change the time limit for fitting the witness function and you can also pass other arguments to the fit model (see [AutoGluon](https://auto.gluon.ai/) documentation). Since the permutations are very cheap, the default number of permutations is relatively high and should work for most use-cases. If your significance level is, say, smaller than 1/1000, consider increasing it further. ### Customizing the machine learning model If you have good domain knowledge about your problem and believe that a specific ML framework will work well, it is easy to wrap your model. Therefore, simply inherit from the class `Model` and wrap the methods (see our implementation in [`model.py`](autotst/model.py)). You can then run the test simply by importing your model and initializing the test accordingly. ```python import autotst tst = autotst.AutoTST(sample_P, sample_Q, model=YourCustomModel) ... ... etc. ``` We also provide a wrapper for `AutoGluonImagePredictor`. However, it seems that this should not be used with small datasets and small training times. ## References If you use this package, please cite this paper: Jonas M. Kübler, Vincent Stimper, Simon Buchholz, Krikamol Muandet, Bernhard Schölkopf: "AutoML Two-Sample Test", [arXiv 2206.08843](https://arxiv.org/abs/2206.08843) (2022) Bibtex: ``` @misc{kubler2022autotst, doi = {10.48550/ARXIV.2206.08843}, url = {https://arxiv.org/abs/2206.08843}, author = {Kübler, Jonas M. and Stimper, Vincent and Buchholz, Simon and Muandet, Krikamol and Schölkopf, Bernhard}, title = {AutoML Two-Sample Test}, publisher = {arXiv}, year = {2022}, } ```


نیازمندی

مقدار نام
>=0.4.2,<0.5.0 autogluon
>=1.3,<2.0 pandas
>=1.4.4,<2.0.0 nptyping
>=1.21,<2.0 numpy
>=7.1.2,<8.0.0 pytest
==0.11.3 torchvision
>=1.4 importlib-metadata


زبان مورد نیاز

مقدار نام
>=3.7.1,<3.10 Python


نحوه نصب


نصب پکیج whl autotst-1.2:

    pip install autotst-1.2.whl


نصب پکیج tar.gz autotst-1.2:

    pip install autotst-1.2.tar.gz