معرفی شرکت ها


automl_gs-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Provide an input CSV and a target field to predict, generate a model + code to run it.
ویژگی مقدار
سیستم عامل -
نام فایل automl_gs-0.2.1
نام automl_gs
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Max Woolf
ایمیل نویسنده max@minimaxir.com
آدرس صفحه اصلی https://github.com/minimaxir/automl-gs
آدرس اینترنتی https://pypi.org/project/automl_gs/
مجوز MIT
Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see *exactly* how the data is processed, how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's [NNI](https://github.com/Microsoft/nni), Uber's [Ludwig](https://github.com/uber/ludwig), and [TPOT](https://github.com/EpistasisLab/tpot), offers a *zero code/model definition interface* to getting an optimized model and data transformation pipeline in multiple popular ML/DL frameworks, with minimal Python dependencies (pandas + scikit-learn + your framework of choice). automl-gs is designed for citizen data scientists and engineers without a deep statistical background under the philosophy that you don't need to know any modern data preprocessing and machine learning engineering techniques to create a powerful prediction workflow. Nowadays, the cost of computing many different models and hyperparameters is much lower than the oppertunity cost of an data scientist's time. automl-gs is a Python 3 module designed to abstract away the common approaches to transforming tabular data, architecting machine learning/deep learning models, and performing random hyperparameter searches to identify the best-performing model. This allows data scientists and researchers to better utilize their time on model performance optimization. * Generates native Python code; no platform lock-in, and no need to use automl-gs after the model script is created. * Train model configurations super-fast *for free* using a **TPU** in Google Colaboratory. * Handles messy datasets that normally require manual intervention, such as datetime/categorical encoding and spaced/parathesized column names. * Each part of the generated model pipeline is its own function w/ docstrings, making it much easier to integrate into production workflows. * Extremely detailed metrics reporting for every trial stored in a tidy CSV, allowing you to identify and visualize model strengths and weaknesses. * Correct serialization of data pipeline encoders on disk (i.e. no pickled Python objects!) * Retrain the generated model on new data without making any code/pipeline changes. * Quit the hyperparameter search at any time, as the results are saved after each trial. The models generated by automl-gs are intended to give a very strong *baseline* for solving a given problem; they're not the end-all-be-all that often accompanies the AutoML hype, but the resulting code is easily tweakable to improve from the baseline.


نحوه نصب


نصب پکیج whl automl_gs-0.2.1:

    pip install automl_gs-0.2.1.whl


نصب پکیج tar.gz automl_gs-0.2.1:

    pip install automl_gs-0.2.1.tar.gz