معرفی شرکت ها


automatic-speech-recognition-1.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Distill the Automatic Speech Recognition (TensorFlow)
ویژگی مقدار
سیستم عامل -
نام فایل automatic-speech-recognition-1.0.4
نام automatic-speech-recognition
نسخه کتابخانه 1.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rolczynski Rafal
ایمیل نویسنده rafal.rolczynski@gmail.com
آدرس صفحه اصلی https://github.com/rolczynski/Automatic-Speech-Recognition
آدرس اینترنتی https://pypi.org/project/automatic-speech-recognition/
مجوز GNU
### Automatic Speech Recognition The project aim is to distill the Automatic Speech Recognition research. At the beginning, you can load a ready-to-use pipeline with a pre-trained model. Benefit from the eager `TensorFlow 2.0` and freely monitor model weights, activations or gradients. ```python import automatic_speech_recognition as asr file = 'to/test/sample.wav' # sample rate 16 kHz, and 16 bit depth sample = asr.utils.read_audio(file) pipeline = asr.load('deepspeech2', lang='en') pipeline.model.summary() # TensorFlow model sentences = pipeline.predict([sample]) ``` <br> We support english (thanks to [Open Seq2Seq](https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition.html#speech-recognition)). The evaluation results of the English benchmark LibriSpeech dev-clean are in the table. To reference, the DeepSpeech (Mozilla) achieves around 7.5% WER, whereas the state-of-the-art (RWTH Aachen University) equals 2.3% WER (recent evaluation results can be found [here](https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean)). Both of them, use the external language model to boost results. By comparison, _humans_ achieve 5.83% WER [here](https://arxiv.org/abs/1512.02595v1) (LibriSpeech dev-clean) | Model Name | Decoder | WER-dev | | :--- | :---: | :---: | | `deepspeech2` | greedy | 6.71 | <br> Shortly it turns out that you need to adjust pipeline a little bit. Take a look at the [CTC Pipeline](automatic_speech_recognition/pipeline/ctc_pipeline.py). The pipeline is responsible for connecting a neural network model with all non-differential transformations (features extraction or prediction decoding). Pipeline components are independent. You can adjust them to your needs e.g. use more sophisticated feature extraction, different data augmentation, or add the language model decoder (static n-grams or huge transformers). You can do much more like distribute the training using the [Strategy](https://www.tensorflow.org/guide/distributed_training), or experiment with [mixed precision](https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision/experimental/Policy) policy. <br> ```python import numpy as np import tensorflow as tf import automatic_speech_recognition as asr dataset = asr.dataset.Audio.from_csv('train.csv', batch_size=32) dev_dataset = asr.dataset.Audio.from_csv('dev.csv', batch_size=32) alphabet = asr.text.Alphabet(lang='en') features_extractor = asr.features.FilterBanks( features_num=160, winlen=0.02, winstep=0.01, winfunc=np.hanning ) model = asr.model.get_deepspeech2( input_dim=160, output_dim=29, rnn_units=800, is_mixed_precision=False ) optimizer = tf.optimizers.Adam( lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-8 ) decoder = asr.decoder.GreedyDecoder() pipeline = asr.pipeline.CTCPipeline( alphabet, features_extractor, model, optimizer, decoder ) pipeline.fit(dataset, dev_dataset, epochs=25) pipeline.save('/checkpoint') test_dataset = asr.dataset.Audio.from_csv('test.csv') wer, cer = asr.evaluate.calculate_error_rates(pipeline, test_dataset) print(f'WER: {wer} CER: {cer}') ``` <br> #### Installation You can use pip: ```bash pip install automatic-speech-recognition ``` Otherwise clone the code and create a new environment via [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#): ```bash git clone https://github.com/rolczynski/Automatic-Speech-Recognition.git conda env create -f=environment.yml # or use: environment-gpu.yml conda activate Automatic-Speech-Recognition ``` <br> #### References The fundamental repositories: - Baidu - [DeepSpeech2 - A PaddlePaddle implementation of DeepSpeech2 architecture for ASR](https://github.com/PaddlePaddle/DeepSpeech) - NVIDIA - [Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP](https://nvidia.github.io/OpenSeq2Seq) - RWTH Aachen University - [The RWTH extensible training framework for universal recurrent neural networks](https://github.com/rwth-i6/returnn) - TensorFlow - [The implementation of DeepSpeech2 model](https://github.com/tensorflow/models/tree/master/research/deep_speech) - Mozilla - [DeepSpeech - A TensorFlow implementation of Baidu's DeepSpeech architecture](https://github.com/mozilla/DeepSpeech) - Espnet - [End-to-End Speech Processing Toolkit](https://github.com/espnet/espnet) - Sean Naren - [Speech Recognition using DeepSpeech2](https://github.com/SeanNaren/deepspeech.pytorch) Moreover, you can explore the GitHub using key phrases like `ASR`, `DeepSpeech`, or `Speech-To-Text`. The list [wer_are_we](https://github.com/syhw/wer_are_we), an attempt at tracking states of the art, can be helpful too.


نیازمندی

مقدار نام
>=2.0 tensorflow
- pandas
- tables
- scipy
- google-cloud-storage
- python-speech-features


زبان مورد نیاز

مقدار نام
~=3.7 Python


نحوه نصب


نصب پکیج whl automatic-speech-recognition-1.0.4:

    pip install automatic-speech-recognition-1.0.4.whl


نصب پکیج tar.gz automatic-speech-recognition-1.0.4:

    pip install automatic-speech-recognition-1.0.4.tar.gz