معرفی شرکت ها


autolens-2023.3.27.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Open-Source Strong Lensing
ویژگی مقدار
سیستم عامل -
نام فایل autolens-2023.3.27.1
نام autolens
نسخه کتابخانه 2023.3.27.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده James Nightingale and Richard Hayes
ایمیل نویسنده james.w.nightingale@durham.ac.uk
آدرس صفحه اصلی https://github.com/Jammy2211/PyAutoLens
آدرس اینترنتی https://pypi.org/project/autolens/
مجوز MIT License
PyAutoLens: Open-Source Strong Lensing ====================================== .. |nbsp| unicode:: 0xA0 :trim: .. |binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/Jammy2211/autolens_workspace/HEAD .. |RTD| image:: https://readthedocs.org/projects/pyautolens/badge/?version=latest :target: https://pyautolens.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. |Tests| image:: https://github.com/Jammy2211/PyAutoLens/actions/workflows/main.yml/badge.svg :target: https://github.com/Jammy2211/PyAutoLens/actions .. |Build| image:: https://github.com/Jammy2211/PyAutoBuild/actions/workflows/release.yml/badge.svg :target: https://github.com/Jammy2211/PyAutoBuild/actions .. |code-style| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black .. |JOSS| image:: https://joss.theoj.org/papers/10.21105/joss.02825/status.svg :target: https://doi.org/10.21105/joss.02825 .. |arXiv| image:: https://img.shields.io/badge/arXiv-1708.07377-blue :target: https://arxiv.org/abs/1708.07377 |binder| |RTD| |Tests| |Build| |code-style| |JOSS| |arXiv| `Installation Guide <https://pyautolens.readthedocs.io/en/latest/installation/overview.html>`_ | `readthedocs <https://pyautolens.readthedocs.io/en/latest/index.html>`_ | `Introduction on Binder <https://mybinder.org/v2/gh/Jammy2211/autolens_workspace/release?filepath=introduction.ipynb>`_ | `HowToLens <https://pyautolens.readthedocs.io/en/latest/howtolens/howtolens.html>`_ When two or more galaxies are aligned perfectly down our line-of-sight, the background galaxy appears multiple times. This is called strong gravitational lensing and **PyAutoLens** makes it simple to model strong gravitational lenses, like this one: .. image:: https://github.com/Jammy2211/PyAutoLens/blob/main/files/imageaxis.png?raw=true Getting Started --------------- The following links are useful for new starters: - `The introduction Jupyter Notebook on Binder <https://mybinder.org/v2/gh/Jammy2211/autolens_workspace/release?filepath=introduction.ipynb>`_, where you can try **PyAutoLens** in a web browser (without installation). - `The PyAutoLens readthedocs <https://pyautolens.readthedocs.io/en/latest>`_, which includes `an installation guide <https://pyautolens.readthedocs.io/en/latest/installation/overview.html>`_ and an overview of **PyAutoLens**'s core features. - `The autolens_workspace GitHub repository <https://github.com/Jammy2211/autolens_workspace>`_, which includes example scripts and the `HowToLens Jupyter notebook tutorials <https://github.com/Jammy2211/autolens_workspace/tree/master/notebooks/howtolens>`_ which give new users a step-by-step introduction to **PyAutoLens**. API Overview ------------ Lensing calculations are performed in **PyAutoLens** by building a ``Tracer`` object from ``LightProfile``, ``MassProfile`` and ``Galaxy`` objects. Below, we create a simple strong lens system where a redshift 0.5 lens ``Galaxy`` with an ``Isothermal`` ``MassProfile`` lenses a background source at redshift 1.0 with an ``Exponential`` ``LightProfile`` representing a disk. .. code-block:: python import autolens as al import autolens.plot as aplt from astropy import cosmology as cosmo """ To describe the deflection of light by mass, two-dimensional grids of (y,x) Cartesian coordinates are used. """ grid = al.Grid2D.uniform( shape_native=(50, 50), pixel_scales=0.05, # <- Conversion from pixel units to arc-seconds. ) """ The lens galaxy has an elliptical isothermal mass profile and is at redshift 0.5. """ mass = al.mp.Isothermal( centre=(0.0, 0.0), ell_comps=(0.1, 0.05), einstein_radius=1.6 ) lens_galaxy = al.Galaxy(redshift=0.5, mass=mass) """ The source galaxy has an elliptical exponential light profile and is at redshift 1.0. """ disk = al.lp.Exponential( centre=(0.3, 0.2), ell_comps=(0.05, 0.25), intensity=0.05, effective_radius=0.5, ) source_galaxy = al.Galaxy(redshift=1.0, disk=disk) """ We create the strong lens using a Tracer, which uses the galaxies, their redshifts and an input cosmology to determine how light is deflected on its path to Earth. """ tracer = al.Tracer.from_galaxies( galaxies=[lens_galaxy, source_galaxy], cosmology: ag.cosmo.LensingCosmology = ag.cosmo.Planck15() ) """ We can use the Grid2D and Tracer to perform many lensing calculations, for example plotting the image of the lensed source. """ tracer_plotter = aplt.TracerPlotter(tracer=tracer, grid=grid) tracer_plotter.figures_2d(image=True) With **PyAutoLens**, you can begin modeling a lens in minutes. The example below demonstrates a simple analysis which fits the lens galaxy's mass with an ``Isothermal`` and the source galaxy's light with an ``Sersic``. .. code-block:: python import autofit as af import autolens as al import autolens.plot as aplt """ Load Imaging data of the strong lens from the dataset folder of the workspace. """ imaging = al.Imaging.from_fits( image_path="/path/to/dataset/image.fits", noise_map_path="/path/to/dataset/noise_map.fits", psf_path="/path/to/dataset/psf.fits", pixel_scales=0.1, ) """ Create a mask for the imaging data, which we setup as a 3.0" circle, and apply it. """ mask = al.Mask2D.circular( shape_native=imaging.shape_native, pixel_scales=imaging.pixel_scales, radius=3.0 ) imaging = imaging.apply_mask(mask=mask) """ We model the lens galaxy using an elliptical isothermal mass profile and the source galaxy using an elliptical sersic light profile. """ lens_mass_profile = al.mp.Isothermal source_light_profile = al.lp.Sersic """ To setup these profiles as model components whose parameters are free & fitted for we set up each Galaxy as a Model and define the model as a Collection of all galaxies. """ lens_galaxy_model = af.Model(al.Galaxy, redshift=0.5, mass=lens_mass_profile) source_galaxy_model = af.Model(al.Galaxy, redshift=1.0, disk=source_light_profile) model = af.Collection(galaxies=af.Collection(lens=lens_galaxy_model, source=source_galaxy_model)) """ We define the non-linear search used to fit the model to the data (in this case, Dynesty). """ search = af.DynestyStatic(name="search[example]", nlive=50) """ We next set up the `Analysis`, which contains the `log likelihood function` that the non-linear search calls to fit the lens model to the data. """ analysis = al.AnalysisImaging(dataset=imaging) """ To perform the model-fit we pass the model and analysis to the search's fit method. This will output results (e.g., dynesty samples, model parameters, visualization) to hard-disk. """ result = search.fit(model=model, analysis=analysis) """ The results contain information on the fit, for example the maximum likelihood model from the Dynesty parameter space search. """ print(result.samples.max_log_likelihood()) Support ------- Support for installation issues, help with lens modeling and using **PyAutoLens** is available by `raising an issue on the GitHub issues page <https://github.com/Jammy2211/PyAutoLens/issues>`_. We also offer support on the **PyAutoLens** `Slack channel <https://pyautolens.slack.com/>`_, where we also provide the latest updates on **PyAutoLens**. Slack is invitation-only, so if you'd like to join send an `email <https://github.com/Jammy2211>`_ requesting an invite.


نیازمندی

مقدار نام
==2023.3.27.1 autoarray
==2023.3.27.1 autoconf
==2023.3.27.1 autofit
==2023.3.27.1 autogalaxy


نحوه نصب


نصب پکیج whl autolens-2023.3.27.1:

    pip install autolens-2023.3.27.1.whl


نصب پکیج tar.gz autolens-2023.3.27.1:

    pip install autolens-2023.3.27.1.tar.gz