معرفی شرکت ها


autograd-minimize-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A wrapper of scipy minimize with automatic gradient and hessian computation.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل autograd-minimize-0.2.2
نام autograd-minimize
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Bruno Rigal
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/brunorigal/autograd_minimize
آدرس اینترنتی https://pypi.org/project/autograd-minimize/
مجوز -
# autograd-minimize autograd-minimize is a wrapper around the minimize routine of scipy which uses the autograd capacities of tensorflow or pytorch to compute automatically the gradients, hessian vector products and hessians. It also accepts functions of more than one variables as input. ## Installation `pip install autograd-minimize` ## Basic usage It uses tensorflow as the default backend: ``` import tensorflow as tf from autograd_minimize import minimize def rosen_tf(x): return tf.reduce_sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0) res = minimize(rosen_tf, np.array([0.,0.])) print(res.x) >>> array([0.99999912, 0.99999824]) ``` But you can also use pytorch: ``` import torch from autograd_minimize import minimize def rosen_torch(x): return (100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0).sum() res = minimize(rosen_torch, np.array([0.,0.]), backend='torch') print(res.x) >>> array([0.99999912, 0.99999824]) ``` You can also try other optimization methods such as Newton-CG which uses automatic computation of the hessian vector product (hvp). Let's as well increase the precision of hvp and gradient computation to float64 and the tolerance to 1e-8: ``` import numpy as np res = minimize(rosen_tf, np.array([0.,0.]), method='Newton-CG', precision='float64', tol=1e-8) print(np.mean(res.x-1)) >>> -2.6886433635020524e-09 ``` Or we can use the trust-exact method (with automatic computation of the hessian): ``` import numpy as np res = minimize(rosen_tf, np.array([0.,0.]), method='trust-exact', precision='float64', tol=1e-8) print(np.mean(res.x-1)) >>> -1.6946999359390702e-12 ``` Let's now try to do matrix factorization. In this case it is much easier to deal with a function with two inputs, where the input should be a dict or a list with a similar signature as the function: ``` shape = (10, 15) inner_shape=3 from numpy.random import random U = random((shape[0], inner_shape)) V = random((inner_shape, shape[1])) prod = U@V def mat_fac(U=None, V=None): return tf.reduce_mean((U@V-tf.constant(prod, dtype=tf.float32))**2) x0 = {'U': -random((shape[0], inner_shape)), 'V': random((inner_shape, shape[1]))} tic = time() res = minimize(mat_fac, x0) print(res.fun) >>> 6.136937713563384e-08 ``` ## Bounds You can also set bounds (only for the methods: L-BFGS-B, TNC, SLSQP, Powell, and trust-constr): If bounds is a tuple, the same bound is applied to all variables: ``` res = minimize(mat_fac, x0, bounds=(None, 0)) print(res.x['U'].mean()) >>> -0.6171053993128699 ``` You can apply bounds only to a subset of variables by using a list or a dict (but it should be the same as the format of input x0): ``` res = minimize(mat_fac, x0, bounds={'U': (None, 0), 'V': (-1, None)}) print(res.x['U'].mean(), res.x['V'].mean()) >>> -0.8173837691822693 0.11222992115637932 ``` Inside each variable of the dict/list, you can pass a numpy array or a list of bounds which the same shape or len as the variable to specify in more details the bounds: ``` res = minimize(mat_fac, x0, bounds={'U': (0, None), 'V': [(0, None)]*inner_shape*shape[1]}) ``` ## Keras models You can also optimize keras models by transforming them into a function of their parameters, using `autograd_minimize.tf_wrapper.tf_function_factory`: ``` import numpy as np from tensorflow import keras from tensorflow.keras import layers from autograd_minimize.tf_wrapper import tf_function_factory from autograd_minimize import minimize import tensorflow as tf #### Prepares data X = np.random.random((200, 2)) y = X[:,:1]*2+X[:,1:]*0.4-1 #### Creates model model = keras.Sequential([keras.Input(shape=2), layers.Dense(1)]) # Transforms model into a function of its parameter func, params = tf_function_factory(model, tf.keras.losses.MSE, X, y) # Minimization res = minimize(func, params, method='L-BFGS-B') ``` Note that you can do the same on torch models by replacing `autograd_minimize.tf_wrapper.tf_function_factory` by `autograd_minimize.torch_wrapper.torch_function_factory`. ## Constraints And you can set constraints (with automatic computation of the jacobian). An example is given in `examples/multiknapsack`, where the (relaxed) multiknapsack problem is solved. ## ToDo * Adds comparison with LBFGS from pytorch or keras


نیازمندی

مقدار نام
- scipy


نحوه نصب


نصب پکیج whl autograd-minimize-0.2.2:

    pip install autograd-minimize-0.2.2.whl


نصب پکیج tar.gz autograd-minimize-0.2.2:

    pip install autograd-minimize-0.2.2.tar.gz