معرفی شرکت ها


autoboost-20.8.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A thin wrapper for step-wise parameter optimization of boosting algorithms.
ویژگی مقدار
سیستم عامل -
نام فایل autoboost-20.8.4
نام autoboost
نسخه کتابخانه 20.8.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sven H. Giese
ایمیل نویسنده sven.giese88@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/autoboost/
مجوز -
![release](https://img.shields.io/github/v/release/gieses/autoboost) [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://flat.badgen.net/twitter/follow/SvenHGiese?icon=twitter)](https://twitter.com/SvenHGiese/) [![Python 3.9](https://img.shields.io/badge/python-3.9-blue.svg)](https://www.python.org/downloads/release/python-390/) ![PyPI version](https://img.shields.io/pypi/v/autoboost) ![coverage](.github/imgs/coverage.svg) ## autoboost Automatic step-wise parameter optimization for xgboost, lightgbm and sklearn's GradingBoosting. ### Implemented Strategy The optimization strategy is taken from [SylwiaOliwia](https://github.com/SylwiaOliwia2/xgboost-AutoTune#xgboost-autotune). We only incorporate slight changes to the implementation, e.g. we base all decision on the cross-validation test folds and not the entire data set. The following excerpt is also taken from the readme: ### General note Full GridSearch is time- and memory-demanding, so xgboost-AutoTune tunes parameters in the following steps (one by one, from the most robust to the less): 1. n_estimators 2. max_depth, min_child_weight 3. Gamma 4. n_estimators 5. Subsample, colsample_bytree 6. reg_alpha, reg_lambda 7. n_estimators and learning_rate 8. Some of them are related only to `xgboost`, `LightGBM` or `GBM`. Algorithm picks parameters valid for given model and skip the rest. Model is updated by newly chosen parameters in each step. #### Detailed notes Algorithm make GridsearchCV for each in seven steps (see **General note** section) and choose the best value. It uses domian values: ```python {'n_estimators': [30, 50, 70, 100, 150, 200, 300]}, {'max_depth': [3, 5, 7, 9], 'min_child_weight': [0.001, 0.1, 1, 5, 10, 20], 'min_samples_split': [1, 2, 5, 10, 20, 30], 'num_leaves': [15, 35, 50, 75, 100, 150]}, {'gamma': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 'min_samples_leaf': [1, 2, 5, 10, 20, 30], 'min_child_samples': [2, 7, 15, 25, 45], 'min_split_gain': [0, 0.001, 0.1, 1, 5, 20]}, {'n_estimators': [30, 50, 70, 100, 150, 200, 300], 'max_features': range(10, 25, 3)}, {'subsample': [i / 10 for i in range(4, 10)], 'colsample_bytree': [i / 10 for i in range(4, 10)], 'feature_fraction': [i / 10 for i in range(4, 10)]}, {'reg_alpha': [1e-5, 1e-2, 0.1, 1, 25, 100], 'reg_lambda': [1e-5, 1e-2, 0.1, 1, 25, 100]} ``` Unless user will provide his own dictionary of values in **initial_params_dict**. In each iteration, if chosing the best value from array has improved **scoring** by **min_loss**, algorithm continue searching. It creates new array from the best value, and 2 values in the neighbourhood: * If the best value in the previous array had neighbours, then new neighbours will be average between best value and it's previous neighbours. Example: if the best value from `n_estimators`: `[30, 50, 70, 100, 150, 200, 300]` will be 70, than the new array to search will be `[60, 70, 85]`. * If the best value is the lowest from the array, it's new value will be `2*best_value- following_value` unless it's bigger then minimal (otherwise minimal posible value). * The the best value was the biggest in the array, it will be treated in the similar way, as the lowest one. If new values are float and int is required, values are rounded. `n_estimators` and `learning_rate` are chosen pairwise. Algorithm takes its values from model and train them pairwise: ( n* `n_estimators` , `learning_rate`/ n ). ### Installation autoboost is available on PyPi and conda. You can easily install the package via: ```console conda install -c conda-forge autoboost ``` or alternatively via pip: ```console pip install autoboost ``` ### Usage The standard usage can be summarized as follows: ```python from autoboost import optimizer bo = optimizer.BoostingOptimizer(initial_model=xgboost.XGBRegressor(), scorer=mse_scorer) clf = bo.fit(x_train, y_train) ``` Please the example file for a full working example for [regression](example/regression_diamonds.py) and [classification](example/classification_iris.py). ## Sources The following list of sources is taking from xgboost-AutoTune. - autoboost is based on [xgboost-AutoTune](!https://github.com/SylwiaOliwia2/xgboost-AutoTune) - https://xgboost.readthedocs.io/en/stable/tutorials/param_tuning.html - https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ - https://machinelearningmastery.com/tune-number-size-decision-trees-xgboost-python/ - https://www.kaggle.com/prasunmishra/parameter-tuning-for-xgboost-sklearn/notebook - https://cambridgespark.com/content/tutorials/hyperparameter-tuning-in-xgboost/index.html


نیازمندی

مقدار نام
- xgboost
- lightgbm
- scikit-learn
- seaborn
- matplotlib
- numpy
- tqdm


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl autoboost-20.8.4:

    pip install autoboost-20.8.4.whl


نصب پکیج tar.gz autoboost-20.8.4:

    pip install autoboost-20.8.4.tar.gz