معرفی شرکت ها


aurt-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A robot dynamic parameters calibration toolbox.
ویژگی مقدار
سیستم عامل -
نام فایل aurt-0.0.4
نام aurt
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Emil Madsen, Daniella Tola, Claudio Gomes
ایمیل نویسنده ema@ece.au.dk
آدرس صفحه اصلی https://github.com/INTO-CPS-Association/aurt/
آدرس اینترنتی https://pypi.org/project/aurt/
مجوز -
![Install and run api tests](https://github.com/INTO-CPS-Association/aurt/actions/workflows/run_tests.yml/badge.svg) # Aarhus University Robotics Toolbox (AURT) Overview # Installation To install the tool, type: ``` pip install aurt ``` or, if plotting and visualization features are needed, ``` pip install aurt[vis] ``` # Command Line Interface The following shows the different use cases that aurt supports. In order to improve performance, the model is compiled in different stages, in a way that allows the user to try alternative joint dynamics models without having to re-create the full model, which is a computationally demanding procedure. ## Compile Rigid Body Dynamics Model ``` aurt compile-rbd --mdh mdh.csv --out rigid_body_dynamics ``` Reads the Modified Denavit-Hartenberg (MDH) parameters in file `mdh.csv` and outputs rigid-body dynamics model to file `rigid_body_dynamics`. The generated model does not include the joint dynamics. To visualize the kinematics of the robot, make sure the `roboticstoolbox-python` is installed, and add the argument `--plot` to the `compile-rbd` command. <p align="center"> <img src="resources/robot_Plot.png" alt="MDH plot" width="400"/> </p> ## Compile Robot Dynamics Model ``` aurt compile-rd --model-rbd rigid_body_dynamics --friction-torque-model square --friction-viscous-powers 2 1 4 --out robot_dynamics ``` Reads the rigid-body dynamics model created with the `compile-rbd` command, and generates the robot dynamics model, taking into account the joint dynamics configuration. The friction configuration options are: - `--friction-torque-model TYPE` where `TYPE in {none, square, absolute}` are depicted in the figure below for, respectively, parts (a), (b), and (c). <p align="center"> <img src="resources/friction_load_models.png" alt="The different possibilities for joint torque-dependent friction models" width="400"/> </p> - `--friction-viscous-powers POWERS` where `POWERS` is a set <img src="https://render.githubusercontent.com/render/math?math=S"> of integers having the format `P1 P2 ...` used to define the odd polynomial function <img src="https://render.githubusercontent.com/render/math?math=\mathrm{f}_v"> in the angular velocity <img src="https://render.githubusercontent.com/render/math?math=\dot{q}"> of any joint as <img src="https://render.githubusercontent.com/render/math?math=\mathrm{f}_v(\dot{q}) = \sum_{i\in S}F_{v,\!i}\,b_i"> with <img src="https://render.githubusercontent.com/render/math?math=F_{v,\!i}"> the viscous coefficient of friction corresponding to the integer element <img src="https://render.githubusercontent.com/render/math?math=i"> of <img src="https://render.githubusercontent.com/render/math?math=S">, <img src="https://render.githubusercontent.com/render/math?math=b_i=|\dot{q}|\,\dot{q}^{i-1}"> if <img src="https://render.githubusercontent.com/render/math?math=i"> is even and <img src="https://render.githubusercontent.com/render/math?math=b_i = \dot{q}^i"> otherwise. ## Calibrate ``` aurt calibrate --model robot_dynamics --data measured_data.csv --gravity 0 0 -9.81 --out-params calibrated_parameters.csv --out-calibrated-model rd_calibrated --plot ``` Reads; 1) the model produced by the `compile-rd` command, 2) the measured data in `measured_data.csv`, and 3) the gravity components `GX GY GZ` and writes; 1) the values of the calibrated base parameters to `calibrated_parameters.csv` and 2) the calibrated robot dynamics model to `rd_calibrated`. The gravity vector determines the orientation of the robot base for which the parameters will be calibrated. For showing the calibration plot, use the argument `--plot`. The measured data should contain the following fields: - `timestamp` of type float, representing the number of seconds passed from a given reference point. - `target_qd_j` of type float, representing the `j`th joint target angular velocity, as computed by the robot controller, where `j` is an integer in `{0, 1, ..., N}`. - `actual_q_j` of type float, representing the `j`th joint angle, as measured by the robot controller, where `j` is an integer in `{0, 1, ..., N}`. - `actual_current_j` of type float, representing the `j`th joint current, as measured by the robot controller, where `j` is an integer in `{0, 1, ..., N}`. ## Predict ``` aurt predict --model rd_calibrated --data measured_data.csv --gravity 0 0 -9.81 --out predicted_output.csv ``` Reads; 1) the model produced by the `calibrate` command, 2) the measured data in `measured_data.csv`, and 3) the gravity components `GX GY GZ`, and writes the predicted output to `predicted_output.csv`. The prediction fields are: - `timestamp` of type float, referring to the time of the measured data, as in [Calibrate](#predict). - `predicted_current_j` of type float, representing the `j`th joint current, as predicted by the robot model, where `j` is an integer in `{0, 1, ..., N}`. ## Calibrate and Validate ``` aurt calibrate-validate --model robot_dynamics --data measured_data.csv --gravity 0 0 -9.81 --calibration-data-rel FRACTION --out-params calibrated_parameters.csv --out-calibrated-model rd_calibrated --out-prediction predicted_output.csv --plot ``` Simultaneously calibrates and validates the robot dynamics model using the dataset `measured_data.csv`. The command implements the functionalities of the commands `calibrate` and `predict`. The data of `measured_data.csv` is separated into two consecutive parts 1) calibration data and 2) validation data. The calibration data has a duration of 0.1 < `FRACTION` < 0.9 times the duration of `measured_data.csv` while the remaining part of the data is used for validation. # Contributing ## Development environment To setup the development environment: 1. Open terminal in the current folder. 2. Install all packages for development: `pip install -e .[vis]`. 3. Unpack the datasets (see [Dataset management](#dataset-management)) 4. To run all non live tests, open a command prompt or powershell in the repository root, and run `python build.py --run-tests all-non-live`. If you are using Linux, use `python3` instead of `python`. _NOTE: Run tests before commits. If they don't pass, fix them before committing._ ## Publishing this package on pypi 1. Update version in `setup.py` 2. Make sure all tests, except the live ones, are passing. 3. Delete folders `dist` `build` if they exist. 4. Activate virtual environment. 5. Install twine and wheel: `pip install twine wheel` 6. Create a source distribution: `python setup.py sdist` 7. Create the binary distribution: `python setup.py bdist_wheel` 8. Upload distribution to PyPI: `python -m twine upload dist/*` 9. When asked for username and password, use the token and password created with your PyPI account. ## Dataset management ### Small dataset (< 100MB compressed) If the data is small, then: - Each round of experiments should be placed in a folder with an informative name, inside the Dataset folder. - There should be a readme file in there explaining the steps to reproduce the experiment, parameters, etc... - The csv files should be 7ziped and committed. Do not commit the csv file. - There should be tests that use the data there. ### Large Datasets (>= 100MB compressed) If the data is large, then: - A "lite" version of the dataset should be in the dataset folder (following the same guidelines as before) - This is important to run the tests. - the larger version should be placed in the shared drive (see below). There is a shared drive for large datasets. The shared drive **Nat_robot-datasets** has been created with **Emil Madsen** as owner. | **Shared Drive** | **Owner** | **E-mail** | **Department** | | ------------------ | ---------------------- | ------------------------------------- | ----------------------------------------- | | Nat_robot-datasets | au504769 (Emil Madsen) | [ema@ece.au.dk](mailto:ema@ece.au.dk) | Electrical and Computer Engineering (ECE) | **Read/write access is assigned to:** | **Username** | **Name** | **E-mail** | **Department** | | ------------ | ------------------------------ | --------------------------------------------------------- | ----------------------------------------- | | au602135 | Cláudio Ângelo Gonçalves Gomes | [claudio.gomes@ece.au.dk](mailto:claudio.gomes@ece.au.dk) | Electrical and Computer Engineering (ECE) | | au522101 | Christian Møldrup Legaard | [cml@ece.au.dk](mailto:cml@ece.au.dk) | Electrical and Computer Engineering (ECE) | | au513437 | Daniella Tola | [dt@ece.au.dk](mailto:dt@ece.au.dk) | Electrical and Computer Engineering (ECE) | For more information on access, self-service and management of files: https://medarbejdere.au.dk/en/administration/it/guides/datastorage/data-storage/


نیازمندی

مقدار نام
>=1 numpy
>=1 sympy
>=1 pandas
>=0.24 scikit-learn
- CacheMan
- roboticstoolbox-python
>=1 matplotlib


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl aurt-0.0.4:

    pip install aurt-0.0.4.whl


نصب پکیج tar.gz aurt-0.0.4:

    pip install aurt-0.0.4.tar.gz