معرفی شرکت ها


aursad-0.2.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Accompanying library to the AURSAD dataset
ویژگی مقدار
سیستم عامل -
نام فایل aursad-0.2.4
نام aursad
نسخه کتابخانه 0.2.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Błażej Leporowski
ایمیل نویسنده bleporowski@outlook.com
آدرس صفحه اصلی https://github.com/CptPirx/robo-package
آدرس اینترنتی https://pypi.org/project/aursad/
مجوز -
# AURSAD <div align="left"> [comment]: <> ( <a href='https://ride.readthedocs.io/en/latest/?badge=latest'>) [comment]: <> ( <img src='https://readthedocs.org/projects/ride/badge/?version=latest' alt='Documentation Status' height="20"/>) [comment]: <> ( </a>) [comment]: <> ( <a href="https://codecov.io/gh/LukasHedegaard/ride">) [comment]: <> ( <img src="https://codecov.io/gh/LukasHedegaard/ride/branch/main/graph/badge.svg?token=SJ59JOWNAC" height="20"/>) [comment]: <> ( </a>) <a href="https://opensource.org/licenses/MIT"> <img src="https://img.shields.io/badge/License-MIT-yellow.svg" height="20"> </a> </div> A python library for the AURSAD dataset. Detailed [description](https://arxiv.org/abs/2102.01409) of the dataset and [download](https://zenodo.org/record/4487073). The library contains several useful functionalities for preprocessing the dataset for ML applications: * Creating numpy training and test datasets for sampled data * Creating [Keras TimeSeries generators](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/TimeseriesGenerator) for sliding window data * Prediction and classification mode * In the default prediction mode, the target label of window is the label of the next sample. This can be used to train a sliding window model that predicts the class of the next sample based on the window. * In the classification mode, the target label of a window is the most common label in that window. * Filtering the dataset * Removing undesired columns as outlined in the paper * 3 different types of labeling * Full sample labeling where loosening and tightening motions are labeled together * Separate sample labeling where loosening motion is given its own label * 'Tighten' sample labeling, when only the tightening parts of the whole process are labeled as normal/anomalies, loosening and movement parts of the motion get its own separate labels * Binary labels -> every anomaly is given the same label * Subsampling the data * Dimensionality reduction using PCA or ANOVA F-values * One-hot label encoding * Zero padding the samples to equalise their length * Z-score standardisation * Taking data only from screwdriver sensors ### Dataset The dataset contains 2045 samples in total. The robot was sampled with frequency of 100 Hz. | Type | Label | Samples | % | |--------------------------|-------|---------|----| | Normal operation | 0 | 1420 | 69 | | Damaged screw | 1 | 221 | 11 | | Extra assembly component | 2 | 183 | 9 | | Missing screw | 3 | 218 | 11 | | Damaged thread samples | 4 | 3 | 0 | Additionally, there are 2049 supplementary samples describing the loosening/screw picking motion, labeled 5. ## Installation AURSAD has been tested on Windows 10 and Python 3.8. ### PIP installation To install from pip with required dependencies use: ```bash pip install aursad ``` ### Source installation To install latest version from github, clone the source from the project repository and install with setup.py: ```bash git clone https://github.com/CptPirx/robo-package cd robo-package python setup.py install --user ``` ## Instructions The package presents to user two methods: get_dataset_numpy() and get_dataset_generator(). #### Sampling ```bash def get_dataset_numpy(path, onehot_labels=True, reduce_dimensionality=False, reduce_method='PCA', n_dimensions=60, subsample_data=True, subsample_freq=2, train_size=0.7, random_state=42, normal_samples=1, damaged_samples=1, assembly_samples=1, missing_samples=1, damaged_thread_samples=0, loosening_samples=1, move_samples=1, drop_extra_columns=True, pad_data=True, label_type='partial', binary_labels=False, standardize=False, screwdriver_only=False): """ Create numpy dataset from input file :param assembly_samples: float, percentage of extra assembly samples to take :param binary_labels: bool, if True all anomalies are labeled the same :param damaged_samples: float, percentage of damaged samples to take :param damaged_thread_samples: float, percentage of damaged thread samples to take :param drop_extra_columns: bool, drop the extra columns as outlined in the paper :param label_type: string, 'full', 'partial' or 'tighten' :param loosening_samples: float, percentage of loosening samples to take :param missing_samples: float, percentage of missing samples to take :param move_samples: float, percentage of movement samples to take :param n_dimensions: int, the target number of dimensions :param normal_samples: float, percentage of normal samples to take :param onehot_labels: bool, output onehot encoded labels :param pad_data: bool, if True pad data to equal length samples, if False return data in continuous form :param path: path to the data :param random_state: int, random state for train_test split :param reduce_dimensionality: bool, reduce dimensionality of the dataset :param reduce_method: string, dimensionality reduction method to be used :param screwdriver_only: bool, take only the 4 dimensions from the screwdriver sensors :param standardize: bool, if True apply z-score standardisation :param subsample_data: bool, reduce number of events by taking every subsample_freq event :param subsample_freq: int, the frequency of subsampling :param train_size: float, percentage of data as training data :return: 4 np arrays, train and test data & labels """ ``` Sample usage: ```bash import aursad data_path = 'C:/Users/my_path/robot_data.h5' train_x, train_y, test_x, test_y = aursad.get_dataset_numpy(data_path) ``` #### Sliding window ```bash def get_dataset_generator(path, window_size=100, reduce_dimensionality=False, reduce_method='PCA', n_dimensions=60, subsample_data=True, subsample_freq=2, train_size=0.7, random_state=42, normal_samples=1, damaged_samples=1, assembly_samples=1, missing_samples=1, damaged_thread_samples=0, loosening_samples=1, move_samples=1,drop_extra_columns=True, label_type='partial', batch_size=256, binary_labels=False, standardize=False, screwdriver_only=False, onehot_labels=True): """ Create Keras sliding window generator from input file :param assembly_samples: float, percentage of extra assembly samples to take :param batch_size: int, batch size for the sliding window generator :param binary_labels: bool, if True all anomalies are labeled the same :param damaged_samples: float, percentage of damaged samples to take :param damaged_thread_samples: float, percentage of damaged thread samples to take :param drop_extra_columns: bool, drop the extra columns as outlined in the paper :param label_type: string, 'full', 'partial' or 'tighten' :param loosening_samples: float, percentage of loosening samples to take :param missing_samples: float, percentage of missing samples to take :param move_samples: float, percentage of movement samples to take :param n_dimensions: int, the target number of dimensions :param normal_samples: float, percentage of normal samples to take :param onehot_labels: bool, output onehot encoded labels :param path: path to the data :param prediction_mode: bool, if True the target of a window [x_0, x_100] is label of x_101, if False, the target is the most common label in [x_0, x_100] :param random_state: int, random state for train_test split :param reduce_dimensionality: bool, reduce dimensionality of the dataset :param reduce_method: string, dimensionality reduction method to be used :param screwdriver_only: bool, take only the 4 dimensions from the screwdriver sensors :param standardize: bool, if True apply z-score standardisation :param subsample_data: bool, reduce number of events by taking every subsample_freq event :param subsample_freq: int, the frequency of subsampling :param train_size: float, percentage of data as training data :param window_size: int, size of the sliding window :return: 4 np arrays, train and test data & labels :return: keras TimeSeries generators, train and test generators """ ``` Sample usage: ```bash import aursad data_path = 'C:/Users/my_path/robot_data.h5' train_x, train_y, test_x, test_y, train_generator, test_generator = aursad.get_dataset_generator(data_path) ```


نیازمندی

مقدار نام
- tqdm
- sklearn
- numpy
- pandas
- tensorflow


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl aursad-0.2.4:

    pip install aursad-0.2.4.whl


نصب پکیج tar.gz aursad-0.2.4:

    pip install aursad-0.2.4.tar.gz