معرفی شرکت ها


audioowl-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fast and simple music and audio analysis using RNN in Python
ویژگی مقدار
سیستم عامل -
نام فایل audioowl-0.0.9
نام audioowl
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Dror Ayalon
ایمیل نویسنده d.stamail@gmail.com
آدرس صفحه اصلی https://github.com/dodiku/AudioOwl
آدرس اینترنتی https://pypi.org/project/audioowl/
مجوز MIT
[![GitHub license](https://img.shields.io/github/license/Naereen/StrapDown.js.svg)](https://github.com/Naereen/StrapDown.js/blob/master/LICENSE) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) # AudioOwl AudioOwl is using [librosa](https://librosa.github.io/librosa/index.html) and [RNN models](http://madmom.readthedocs.io/en/latest/index.html) to run fast analysis of music files 🎸. **Jump to:** - [Quickstart](https://github.com/dodiku/AudioOwl#quickstart) - [Installation](https://github.com/dodiku/AudioOwl#installation) - [Usage](https://github.com/dodiku/AudioOwl#usage) - [Output data explained](https://github.com/dodiku/AudioOwl#output-data-explained) > Mix your music automatically with [MixingBear](https://github.com/dodiku/MixingBear) - Automatic beat-mixing of music files 🎚 ![AudioOwl](https://raw.githubusercontent.com/dodiku/AudioOwl/master/Images/AudioOwl.png) # Quickstart Analyze a WAV audio file - ```python import audioowl data = audioowl.analyze_file(path='my_music_file.wav', sr=22050) print (data) ==> {'sample_rate': 22050, 'duration': 36.096009070294784, 'beat_samples': [12794, 40148, 66179, 93092, ..., 'notes': [2,2,2,2,3,3,3,1,1,...] ...} ``` or an MP3 file - ```python data = audioowl.analyze_file(path='my_music_file.mp3', sr=22050) ``` Get beat times in samples (``data['beat_samples']``) - ```python import matplotlib.pyplot as plt waveform = audioowl.get_waveform('drums.mp3', sr=22050) data = audioowl.analyze_file('drums.mp3', sr=22050) plt.figure() plt.vlines(data['beat_samples'], -1.0, 1.0) plt.plot(waveform) plt.show() ``` ![plotting beats](https://raw.githubusercontent.com/dodiku/AudioOwl/master/Images/plot_drums_beats.png) # Installation > Tested on Python 3.6 or later > ⚠️ AudioOwl needs **ffmpeg** to be installed on your machine. > The easiest way to install ffmpeg (at least on a Mac) is using homebrew. [See instructions here](https://gist.github.com/clayton/6196167). The latest stable release is available on PyPI. Install it using the following command - ```bash $ pip install audioowl ``` # Usage Given an audio file, AudioOwl generates an objects with many useful information about your file 💪. ## ``audioowl.get_waveform()`` Returns a numpy array that contains that audio file time series. Supported keyword arguments for ``audioowl.get_waveform()``: - ``path`` - Local path to the audio file. - ``sr`` *[optional]* - Requested sample rate for the analyzed file. This does not have to be the actual sample rate of the file, but the sample rate that will be used for the analysis. default = 22050. ## ``audioowl.analyze_file()`` Returns an object (dictionary) with the analysis results. The ``audioowl.analyze_file()`` function allows you to use the path to the audio file. Supported keyword arguments for ``audioowl.analyze_file()``: - ``path`` - Local path to the audio file. - ``sr`` *[optional]* - Requested sample rate for the analyzed file. This does not have to be the actual sample rate of the file, but the sample rate that will be used for the analysis. default = 22050. ## ``audioowl.analyze_samples()`` Returns a numpy array that contains that audio file time series. The ``audioowl.analyze_samples()`` function allows you to use an audio time series (as numpy array). Example - ```python import audioowl time_series = audioowl.get_waveform('my_music_file.wav') data = audioowl.analyze_samples(y=time_series, sr=44100) ``` Supported keyword arguments for ``audioowl.analyze_samples()``: - ``y`` - Time series. Must be a numpy array, with shape (1,) for mono, and (2,) for stereo. - ``sr`` - Requested sample rate for the analyzed file. This does not have to be the actual sample rate of the file, but the sample rate that will be used for the analysis. ## Output data explained The return value of all function is a an object (dictionary) with the analysis results. In case where the return value is stored in ``data``: ```python import audioowl data = audioowl.analyze_file(path='my_music_file.wav', sr=22050) ``` The ``data`` object will include the following properties: ```python data['sample_rate'] # [int] sample rate data['duration'] # [float] file duration data['beat_samples'] # [list] beat location in samples data['number_of_beats'] # [list] number of detected beats data['tempo_float'] # [float] detected tempo as a float data['tempo_int'] # [int] detected tempo as an int data['zero_crossing'] # [list] detected zero level crossing, in samples detected data['noisiness_median'] # [float] nosiness value as a median, across the file data['noisiness_sum'] # [float] nosiness value as a sum, across the file data['notes'] # [list] notes across the file, based on chromagram of hop_length=512 samples. # notes legend: # 0 c # 1 c# # 2 d # 3 d# # 4 e # 5 f # 6 f# # 7 g # 8 g# # 9 a # 10 a# # 11 b data['dominant_note'] # [int] most dominant (frequent) note across the file ```


نحوه نصب


نصب پکیج whl audioowl-0.0.9:

    pip install audioowl-0.0.9.whl


نصب پکیج tar.gz audioowl-0.0.9:

    pip install audioowl-0.0.9.tar.gz