معرفی شرکت ها


audiomentations-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python library for audio data augmentation. Inspired by albumentations. Useful for machine learning.
ویژگی مقدار
سیستم عامل -
نام فایل audiomentations-0.9.0
نام audiomentations
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Iver Jordal
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/iver56/audiomentations
آدرس اینترنتی https://pypi.org/project/audiomentations/
مجوز MIT
# Audiomentations [![Build status](https://img.shields.io/circleci/project/github/iver56/audiomentations/main.svg)](https://circleci.com/gh/iver56/audiomentations) [![Code coverage](https://img.shields.io/codecov/c/github/iver56/audiomentations/main.svg)](https://codecov.io/gh/iver56/audiomentations) [![Code Style: Black](https://img.shields.io/badge/code%20style-black-black.svg)](https://github.com/ambv/black) [![Licence: MIT](https://img.shields.io/pypi/l/audiomentations)](https://github.com/iver56/audiomentations/blob/main/LICENSE) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7885479.svg)](https://doi.org/10.5281/zenodo.7885479) A Python library for audio data augmentation. Inspired by [albumentations](https://github.com/albu/albumentations). Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products. Need a Pytorch-specific alternative with GPU support? Check out [torch-audiomentations](https://github.com/asteroid-team/torch-audiomentations)! # Setup ![Python version support](https://img.shields.io/pypi/pyversions/audiomentations) [![PyPI version](https://img.shields.io/pypi/v/audiomentations.svg?style=flat)](https://pypi.org/project/audiomentations/) [![Number of downloads from PyPI per month](https://img.shields.io/pypi/dm/audiomentations.svg?style=flat)](https://pypi.org/project/audiomentations/) `pip install audiomentations` # Usage example ```python from audiomentations import Compose, AddGaussianNoise, TimeStretch, PitchShift, Shift import numpy as np augment = Compose([ AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5), TimeStretch(min_rate=0.8, max_rate=1.25, p=0.5), PitchShift(min_semitones=-4, max_semitones=4, p=0.5), Shift(min_fraction=-0.5, max_fraction=0.5, p=0.5), ]) # Generate 2 seconds of dummy audio for the sake of example samples = np.random.uniform(low=-0.2, high=0.2, size=(32000,)).astype(np.float32) # Augment/transform/perturb the audio data augmented_samples = augment(samples=samples, sample_rate=16000) ``` # Documentation See [https://iver56.github.io/audiomentations/](https://iver56.github.io/audiomentations/) # Transforms * [AddBackgroundNoise](https://iver56.github.io/audiomentations/waveform_transforms/add_background_noise/) * [AddGaussianNoise](https://iver56.github.io/audiomentations/waveform_transforms/add_gaussian_noise/) * [AddGaussianSNR](https://iver56.github.io/audiomentations/waveform_transforms/add_gaussian_snr/) * [AddShortNoises](https://iver56.github.io/audiomentations/waveform_transforms/add_short_noises/) * [AirAbsorption](https://iver56.github.io/audiomentations/waveform_transforms/air_absorption/) * [ApplyImpulseResponse](https://iver56.github.io/audiomentations/waveform_transforms/apply_impulse_response/) * [BandPassFilter](https://iver56.github.io/audiomentations/waveform_transforms/band_pass_filter/) * [BandStopFilter](https://iver56.github.io/audiomentations/waveform_transforms/band_stop_filter/) * [Clip](https://iver56.github.io/audiomentations/waveform_transforms/clip/) * [ClippingDistortion](https://iver56.github.io/audiomentations/waveform_transforms/clipping_distortion/) * [Gain](https://iver56.github.io/audiomentations/waveform_transforms/gain/) * [GainTransition](https://iver56.github.io/audiomentations/waveform_transforms/gain_transition/) * [HighPassFilter](https://iver56.github.io/audiomentations/waveform_transforms/high_pass_filter/) * [HighShelfFilter](https://iver56.github.io/audiomentations/waveform_transforms/high_shelf_filter/) * [Lambda](https://iver56.github.io/audiomentations/waveform_transforms/lambda/) * [Limiter](https://iver56.github.io/audiomentations/waveform_transforms/limiter/) * [LoudnessNormalization](https://iver56.github.io/audiomentations/waveform_transforms/loudness_normalization/) * [LowPassFilter](https://iver56.github.io/audiomentations/waveform_transforms/low_pass_filter/) * [LowShelfFilter](https://iver56.github.io/audiomentations/waveform_transforms/low_shelf_filter/) * [Mp3Compression](https://iver56.github.io/audiomentations/waveform_transforms/mp3_compression/) * [Normalize](https://iver56.github.io/audiomentations/waveform_transforms/normalize/) * [Padding](https://iver56.github.io/audiomentations/waveform_transforms/padding/) * [PeakingFilter](https://iver56.github.io/audiomentations/waveform_transforms/peaking_filter/) * [PitchShift](https://iver56.github.io/audiomentations/waveform_transforms/pitch_shift/) * [PolarityInversion](https://iver56.github.io/audiomentations/waveform_transforms/polarity_inversion/) * [Resample](https://iver56.github.io/audiomentations/waveform_transforms/resample/) * [Reverse](https://iver56.github.io/audiomentations/waveform_transforms/reverse/) * [RoomSimulator](https://iver56.github.io/audiomentations/waveform_transforms/room_simulator/) * [SevenBandParametricEQ](https://iver56.github.io/audiomentations/waveform_transforms/seven_band_parametric_eq/) * [Shift](https://iver56.github.io/audiomentations/waveform_transforms/shift/) * [SpecChannelShuffle](https://iver56.github.io/audiomentations/spectrogram_transforms/) * [SpecFrequencyMask](https://iver56.github.io/audiomentations/spectrogram_transforms/) * [TanhDistortion](https://iver56.github.io/audiomentations/waveform_transforms/tanh_distortion/) * [TimeMask](https://iver56.github.io/audiomentations/waveform_transforms/time_mask/) * [TimeStretch](https://iver56.github.io/audiomentations/waveform_transforms/time_stretch/) * [Trim](https://iver56.github.io/audiomentations/waveform_transforms/trim/) # Changelog See [https://iver56.github.io/audiomentations/changelog/](https://iver56.github.io/audiomentations/changelog/) # Acknowledgements Thanks to [Nomono](https://nomono.co/) for backing audiomentations. Thanks to [all contributors](https://github.com/iver56/audiomentations/graphs/contributors) who help improving audiomentations.


نیازمندی

مقدار نام
>=1.13.0 numpy
<0.10.0,>0.7.2 librosa
<2,>=1.0.0 scipy
==0.3.0 cylimiter
<2,>=1.2.0 lameenc
<1,>=0.22.0 pydub
>=0.1.0 pyloudnorm
>=0.6.0 pyroomacoustics


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl audiomentations-0.9.0:

    pip install audiomentations-0.9.0.whl


نصب پکیج tar.gz audiomentations-0.9.0:

    pip install audiomentations-0.9.0.tar.gz