معرفی شرکت ها


audiomate-6.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Audiomate is a library for working with audio datasets.
ویژگی مقدار
سیستم عامل -
نام فایل audiomate-6.0.0
نام audiomate
نسخه کتابخانه 6.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matthias Buechi, Andreas Ahlenstorf
ایمیل نویسنده buec@zhaw.ch
آدرس صفحه اصلی https://github.com/ynop/audiomate
آدرس اینترنتی https://pypi.org/project/audiomate/
مجوز MIT
# AUDIOMATE [![PyPI](https://img.shields.io/pypi/v/audiomate.svg)](https://pypi.python.org/pypi/audiomate) [![Build Status](https://travis-ci.com/ynop/audiomate.svg?branch=master)](https://travis-ci.com/ynop/audiomate) [![Documentation Status](https://readthedocs.org/projects/audiomate/badge/?version=latest)](https://audiomate.readthedocs.io/en/latest/?badge=latest) [![DeepSource](https://static.deepsource.io/deepsource-badge-light-mini.svg)](https://deepsource.io/gh/ynop/audiomate/?ref=repository-badge) Audiomate is a library for easy access to audio datasets. It provides the datastructures for accessing/loading different datasets in a generic way. This should ease the use of audio datasets for example for machine learning tasks. ```python import audiomate from audiomate.corpus import io # Download a dataset esc_downloader = io.ESC50Downloader() esc_downloader.download('/local/path') # Load and work with the dataset esc50 = audiomate.Corpus.load('/local/path', reader='esc-50') # e.g. Read the audio signal and the label of specific sample/utterance utterance = esc50.utterances['1-100032-A-0'] samples = utterance.read_samples() label_list = utterance.label_lists[audiomate.corpus.LL_SOUND_CLASS] for label in label_list: print(label.start, label.value) ``` Furthermore it provides tools for interacting with datasets (validation, splitting, subsets, merge, filter), extracting features, feeding samples for training ML models and more. * [Documentation](https://audiomate.readthedocs.io) * [Examples](https://github.com/ynop/audiomate/tree/master/examples) * [Changelog](https://audiomate.readthedocs.io/en/latest/notes/changelog.html) Currently supported datasets: * [Acoustic Event Dataset](https://arxiv.org/pdf/1604.07160.pdf) * [AudioMNIST](https://github.com/soerenab/AudioMNIST) * [Mozilla Common Voice](https://voice.mozilla.org/) * [ESC-50](https://github.com/karoldvl/ESC-50) * [Fluent Speech Commands](http://www.fluent.ai/research/fluent-speech-commands/) * [Free Spoken Digit Dataset](https://github.com/Jakobovski/free-spoken-digit-dataset) * [German Distant Speech Corpus](https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/acoustic-models.html) * [Google Speech Commands](https://research.googleblog.com/2017/08/launching-speech-commands-dataset.html) * [GTZAN](http://marsyas.info/downloads/datasets.html) * [LibriSpeech](https://www.openslr.org/12/) * [M-AILABS Speech Dataset](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) * [MUSAN](http://www.openslr.org/17/) * [LITIS Rouen Audio scene dataset](https://sites.google.com/site/alainrakotomamonjy/home/audio-scene) * [Spoken Wikipedia Corpora](https://nats.gitlab.io/swc/) * [Tatoeba](https://tatoeba.org/) * [TIMIT](https://github.com/philipperemy/timit) * [Urbansound8k](http://urbansounddataset.weebly.com/urbansound8k.html) * [Voxforge](http://www.voxforge.org/de) Currently supported formats: * [Kaldi](http://kaldi-asr.org/) * [Mozilla DeepSpeech](https://github.com/mozilla/DeepSpeech) * [Wav2Letter](https://github.com/facebookresearch/wav2letter) * [NVIDIA Jasper](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper) * [Custom Formats](https://audiomate.readthedocs.io/en/latest/documentation/formats.html) ## Installation ```sh pip install audiomate ``` Install the latest development version: ```sh pip install git+https://github.com/ynop/audiomate.git ``` ### Dependencies #### sox For parts of the functionality (e.g. audio format conversion) [sox](http://sox.sourceforge.net) is used. In order to use it, you have to install sox. ```sh # macos brew install sox # with support for specific formats brew install sox --with-lame --with-flac --with-libvorbis # linux apt-get install sox # anaconda for macOS/windows/linux: conda install -c conda-forge sox ``` ## Development ### Prerequisites * [A supported version of Python > 3.5](https://docs.python.org/devguide/index.html#status-of-python-branches) It's recommended to use a virtual environment when developing audiomate. To create one, execute the following command in the project's root directory: ``` python -m venv . ``` To install audiomate and all it's dependencies, execute: ``` pip install -e . ``` ### Running the test suite ``` pip install -e .[dev] pytest ``` With PyCharm you might have to change the default test runner. Otherwise, it might only suggest to use nose. To do so, go to File > Settings > Tools > Python Integrated Tools (on the Mac it's PyCharm > Preferences > Settings > Tools > Python Integrated Tools) and change the test runner to py.test. ### Benchmarks In order to check the runtime of specific parts, ``pytest-benchmark`` is used. Benchmarks are normal test functions, but call the benchmark fixture for the code under test. To run benchmarks: ``` # Run all pytest bench # Specific benchmark pytest bench/corpus/test_merge_corpus.py ``` To compare between different runs: ``` pytest-benchmark compare ``` ### Editing the Documentation The documentation is written in [reStructuredText](http://docutils.sourceforge.net/rst.html) and transformed into various output formats with the help of [Sphinx](http://www.sphinx-doc.org/). * [Syntax reference reStructuredText](http://docutils.sourceforge.net/docs/user/rst/quickref.html) * [Sphinx-specific additions to reStructuredText](http://www.sphinx-doc.org/en/stable/markup/index.html) To generate the documentation, execute: ``` pip install -e .[dev] cd docs make html ``` The generated files are written to `docs/_build/html`. ### Versions Versions is handled using [bump2version](https://github.com/c4urself/bump2version). To bump the version: ``` bump2version [major,minor,patch,release,num] ``` In order to directly go to a final relase version (skip .dev/.rc/...): ``` bump2version [major,minor,patch] --new-version x.x.x ``` ### Release Commands to create a new release on pypi. ``` rm -rf build rm -rf dist python setup.py sdist python setup.py bdist_wheel twine upload dist/* ```


نیازمندی

مقدار نام
==2.1.8 audioread
==1.18.1 numpy
==1.4.1 scipy
==0.7.2 librosa
==2.10.0 h5py
==2.4 networkx
==2.23.0 requests
==3.0.2 intervaltree
==1.3.7 sox
==0.5.0 PGet
==0.49.1 numba
==3.7.9 flake8
==2.1.1 flake8-quotes
==7.0 click
==5.3.5 pytest
==5.2 pytest-runner
==2.8.1 pytest-cov
==1.7.0 requests-mock
==2.4.4 Sphinx
==0.4.3 sphinx-rtd-theme
==3.2.3 pytest-benchmark


نحوه نصب


نصب پکیج whl audiomate-6.0.0:

    pip install audiomate-6.0.0.whl


نصب پکیج tar.gz audiomate-6.0.0:

    pip install audiomate-6.0.0.tar.gz