معرفی شرکت ها


audio-degrader-1.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tool to introduce controlled degradations to audio
ویژگی مقدار
سیستم عامل -
نام فایل audio-degrader-1.3.1
نام audio-degrader
نسخه کتابخانه 1.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Emilio Molina
ایمیل نویسنده emilio.mol.mar@gmail.com
آدرس صفحه اصلی https://github.com/EliosMolina/audio_degrader
آدرس اینترنتی https://pypi.org/project/audio-degrader/
مجوز -
[![Build Status](https://travis-ci.com/emilio-molina/audio_degrader.svg?branch=master)](https://travis-ci.com/emilio-molina/audio_degrader) # audio_degrader Latest version: `1.3.1` Audio degradation toolbox in python, with a command-line tool. It is useful to apply controlled degradations to audio. ## Installation `pip install audio_degrader` The program depends on `pysox`, so you might need to install `sox` (and `libsox-fmt-mp3` for mp3 encoding). Go to https://github.com/rabitt/pysox to have more details about it. ## Available degradations ``` convolution,impulse_response,level: Convolve input with specified impulse response parameters: impulse_response: Full path, URL (requires wget), or relative path (see -l option) level: Wet level (0.0=dry, 1.0=wet) example: convolution,impulse_responses/ir_classroom.wav,1.0 dr_compression,degree: Apply dynamic range compression parameters: degree: Degree of compression. Presets from 0 (soft) to 3 (hard) example: dr_compression,0 equalize,central_freq,bandwidth,gain: Apply a two-pole peaking equalisation (EQ) filter parameters: central_freq: Central frequency of filter in Hz bandwidth: Bandwith of filter in Hz gain: Gain of filter in dBs example: equalize,100,50,-10 gain,value: Apply gain expressed in dBs parameters: value: Gain value [dB] example: gain,6 mix,noise,snr: Mix input with a specified noise. The noise can be specified with its full path, URL (requires wget installed), or relative to the resources directory (see -l option) parameters: noise: Full or relative path (to resources dir) of noise snr: Desired Signal-to-Noise-Ratio [dB] example: mix,sounds/ambience-pub.wav,6 mp3,bitrate: Emulate mp3 transcoding parameters: bitrate: Quality [bps] example: mp3,320k normalize: Normalize amplitude of audio to range [-1.0, 1.0] parameters: example: normalize pitch_shift,pitch_shift_factor: Apply pitch shifting parameters: pitch_shift_factor: Pitch shift factor example: pitch_shift,0.9 resample,sample_rate: Resample to given sample rate parameters: sample_rate: Desired sample rate [Hz] example: resample,8000 speed,speed: Change playback speed parameters: speed: Playback speed factor example: speed,0.9 time_stretch,time_stretch_factor: Apply time stretching parameters: time_stretch_factor: Time stretch factor example: time_stretch,0.9 trim_from,start_time: Trim audio from a given start time parameters: start_time: Trim start [seconds] example: trim_from,0.1 ``` ## Usage of python package ```Python import audio_degrader as ad audio_file = ad.AudioFile('input.wav', './tmp_dir') for d in ad.ALL_DEGRADATIONS.values(): print ad.DegradationUsageDocGenerator.get_degradation_help(d) degradations = ad.ParametersParser.parse_degradations_args([ 'normalize', 'gain,6', 'dr_compression,3', 'equalize,500,10,30']) for d in degradations: audio_file.apply_degradation(d) audio_file.to_wav('output.wav') audio_file.delete_tmp_files() ``` ## Usage of command-line tool The script `audio_degrader` is installed along with the python package. ``` # e.g. mix with restaurant08.wav with snr=10db, then amplifies 6db, then compress dynamic range $ audio_degrader -i input.mp3 -d mix,https://github.com/hagenw/audio-degradation-toolbox/raw/master/AudioDegradationToolbox/degradationData/PubSounds/restaurant08.wav,10 gain,6 dr_compression,3 -o out.wav # for more details: $ audio_degrader --help ``` A small set of sounds and impulse responses are installed along with the script, which can be listed with: ``` $ audio_degrader -l # these relative paths can be used directly in the script too: $ audio_degrader -i input.mp3 -d mix,sounds/applause.wav,-3 gain,6 -o out.wav ``` ## Applications * Evaluate Music Information Retrieval systems under different degrees of degradations * Prepare augmented data for training of machine learning systems It is similar to the [Audio Degradation Toolbox in Matlab by Sebastian Ewert and Matthias Mauch][1] (for Matlab). ## Some examples ``` # Mix input with a sound / noise (e.g. using installed resources) $ audio_degrader -i input.wav -d mix,sounds/applause.wav,-3 -o out.wav # Instead of paths, we can also use URLs $ audio_degrader -i input.wav -d mix,https://www.pacdv.com/sounds/ambience_sounds/airport-security-1.mp3,-3 -o out.wav # Microphone recording style $ audio_degrader -i input.wav -d gain,-15 mix,sounds/ambience-pub.wav,18 convolution,impulse_responses/ir_smartphone_mic_mono.wav,0.8 dr_compression,2 equalize,50,100,-6 normalize -o out.wav # Resample and normalize $ audio_degrader -i input.mp3 -d resample,8000 normalize -o out.wav # Convolution (again impulse responses can be resources, full paths or URLs) $ audio_degrader -i input.wav -d convolution,impulse_responses/ir_classroom_mono.wav,0.7 -o out.wav $ audio_degrader -i input.wav -d convolution,http://www.cksde.com/sounds/month_ir/FLANGERSPACE%20E001%20M2S.wav,0.7 -o out.wav ``` ## Audio formats ### Input `audio_degrader` relies on ffmpeg for audio reading, so it can read any format (even video). ### Output `audio_degrader` output format is always wav stereo `pcm_f32le` (sample rate from original audio file). This output wav file can be easily coverted into another format with ffmpeg, e.g.: ``` $ ffmpeg -i out.wav -b:a 320k out.mp3 $ ffmpeg -i out.wav -ac 2 -ar 44100 -acodec pcm_s16le out_formatted.wav ``` [1]: https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox


نیازمندی

مقدار نام
==0.10.3.post1 SoundFile
>=6.1.2 pytest
>=1.4.1 scipy
==1.4.1 sox


نحوه نصب


نصب پکیج whl audio-degrader-1.3.1:

    pip install audio-degrader-1.3.1.whl


نصب پکیج tar.gz audio-degrader-1.3.1:

    pip install audio-degrader-1.3.1.tar.gz