معرفی شرکت ها


attention-5.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Keras Attention Layer
ویژگی مقدار
سیستم عامل -
نام فایل attention-5.0.0
نام attention
نسخه کتابخانه 5.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Philippe Remy
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/attention/
مجوز Apache 2.0
# Keras Attention Mechanism [![Downloads](https://pepy.tech/badge/attention)](https://pepy.tech/project/attention) [![Downloads](https://pepy.tech/badge/attention/month)](https://pepy.tech/project/attention) [![license](https://img.shields.io/badge/License-Apache_2.0-brightgreen.svg)](https://github.com/philipperemy/keras-attention-mechanism/blob/master/LICENSE) [![dep1](https://img.shields.io/badge/Tensorflow-2.0+-brightgreen.svg)](https://www.tensorflow.org/) ![Simple Keras Attention CI](https://github.com/philipperemy/keras-attention-mechanism/workflows/Simple%20Keras%20Attention%20CI/badge.svg) Many-to-one attention mechanism for Keras. <p align="center"> <img src="examples/equations.png" width="600"> </p> ## Installation *PyPI* ```bash pip install attention ``` ## Example ```python import numpy as np from tensorflow.keras import Input from tensorflow.keras.layers import Dense, LSTM from tensorflow.keras.models import load_model, Model from attention import Attention def main(): # Dummy data. There is nothing to learn in this example. num_samples, time_steps, input_dim, output_dim = 100, 10, 1, 1 data_x = np.random.uniform(size=(num_samples, time_steps, input_dim)) data_y = np.random.uniform(size=(num_samples, output_dim)) # Define/compile the model. model_input = Input(shape=(time_steps, input_dim)) x = LSTM(64, return_sequences=True)(model_input) x = Attention(units=32)(x) x = Dense(1)(x) model = Model(model_input, x) model.compile(loss='mae', optimizer='adam') model.summary() # train. model.fit(data_x, data_y, epochs=10) # test save/reload model. pred1 = model.predict(data_x) model.save('test_model.h5') model_h5 = load_model('test_model.h5', custom_objects={'Attention': Attention}) pred2 = model_h5.predict(data_x) np.testing.assert_almost_equal(pred1, pred2) print('Success.') if __name__ == '__main__': main() ``` ## Other Examples Browse [examples](examples). Install the requirements before running the examples: `pip install -r examples/examples-requirements.txt`. ### IMDB Dataset In this experiment, we demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). Here are the results on 10 runs. For every run, we record the max accuracy on the test set for 10 epochs. | Measure | No Attention (250K params) | Attention (250K params) | | ------------- | ------------- | ------------- | | MAX Accuracy | 88.22 | 88.76 | | AVG Accuracy | 87.02 | 87.62 | | STDDEV Accuracy | 0.18 | 0.14 | As expected, there is a boost in accuracy for the model with attention. It also reduces the variability between the runs, which is something nice to have. ### Adding two numbers Let's consider the task of adding two numbers that come right after some delimiters (0 in this case): `x = [1, 2, 3, 0, 4, 5, 6, 0, 7, 8]`. Result is `y = 4 + 7 = 11`. The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. As the training progresses, the model learns the task and the attention map converges to the ground truth. <p align="center"> <img src="examples/attention.gif" width="320"> </p> ### Finding max of a sequence We consider many 1D sequences of the same length. The task is to find the maximum of each sequence. We give the full sequence processed by the RNN layer to the attention layer. We expect the attention layer to focus on the maximum of each sequence. After a few epochs, the attention layer converges perfectly to what we expected. <p align="center"> <img src="examples/readme/example.png" width="320"> </p> ## References - https://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf - https://arxiv.org/abs/1508.04025 - https://arxiv.org/abs/1409.0473


نیازمندی

مقدار نام
>=1.18.1 numpy
>=2.1 tensorflow


نحوه نصب


نصب پکیج whl attention-5.0.0:

    pip install attention-5.0.0.whl


نصب پکیج tar.gz attention-5.0.0:

    pip install attention-5.0.0.tar.gz