معرفی شرکت ها


attacktree-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Build, analyize and render attack trees
ویژگی مقدار
سیستم عامل -
نام فایل attacktree-0.0.2
نام attacktree
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده hyakuhei
ایمیل نویسنده hyakuhei@gmail.com
آدرس صفحه اصلی https://github.com/hyakuhei/attackTrees
آدرس اینترنتی https://pypi.org/project/attacktree/
مجوز -
## WIP warning This is a work in progress, a toy that I've been working on over the weekend. It's on GitHub just as a safe place to save it. It's in a public repo because it's not sensitive but I'm not encouraging anyone to use it :) ## Idea Programatically model trees like those described by [Kelly Shortridge](https://twitter.com/swagitda_), [here](https://swagitda.com/blog/posts/security-decision-trees-with-graphviz/) The goal is to decouple the model from the view. In reality I'm removing the need for the user to understand Graphviz and introducing a need for them to understand python. Models differentiate between controls that are *imlemented* and those that are not; modelling both the current security posture, and a potential (improved) posture. The `renderer.render()` function can toggle whether to include unimplemented things in it's graph. ![PNG image showing graph created by exampleTree_simpleS3.py](images/example_simpleS3.png?raw=true "Simple S3") # Prerequisites for Installation or Development Your system needs an installed version of graphviz for rendering to work. On MacOS this can be installed using `brew install graphviz` See https://graphviz.org/download/ for other options. # Installation attacktree is available in PyPI, we recommend installing in a virtualenv ``` python3 -m venv .venv source .venv/bin/activate pip install attacktree ``` ## Instructions for running `S3Simple.py` is a simple model, containing only a single path in some hypothetical S3 threat model. It can be run simply: ``` python3 examples/S3Simple.py ``` `S3Complex.py` contains some potential blocking mitigations, things the security team might be considering but hasn't implemented yet. ``` python3 examples/S3Complex.py ``` ## Methodology In messing with this idea, I've found the easiest approach is to map the existing paths out first, without consideration for things you might implement. To see what that looks like checkout [examples/S3Simple.py](eexamples/S3Simple.py). After this one can either create a new tree with potential mitigations _or_ add them to the existing tree, for examples purposes I chose the former; [examples/S3Complex.py](examples/S3Complex.py). See [Methodology.md](Methodology.md) for more thoughts on how this might work in practice. ## Node types There are serveral types of node [modelled](models.py), they're mostly self documenting. * Action: An attacker action expected to achieve some result * Detect: A detection, a node that represents our (security team) ability to detect that action * Block: Our ability to block that action * Discovery: Knowledge that an attacker gains through successful completion of an action. ## Line types There are two types of line, solid and dashed (note, these can be changed in [style.json](style.json)). * Solid: This path exists today * Dashed: This path represents what would happen if we implemented a control that is currently not implemented. The last line in each of those files is a call to render the tree: ``` renderer.render( node=root, renderUnimplemented=True, style=style, fname="example_complexS3", fout="png" ) ``` I imagine that in general usage, we'd just want one model for a specific attacker; not a _simple and a _complex_ one. However, it's very useful to be able to see what those different graphs look like, as the latter models things we _could_ do but are currently *unimplemented* - for that reason the `render()` function has a parameter to enable or disable rendering of unimplemented paths. This way you can record everything in one tree (and maybe add that into version control, as a system of record) and render different outputs, one that shows your current reality, and one that shows your potential reality (hopefully improved). Below is the output of running the _complex example with `renderUnimplemented=True`, note that if you set this to `False` the generated graph looks the same as `examples/S3Simple.py.py` ![PNG image showing graph created by examples/S3Complex.py](images/example_complexS3.png?raw=true "Complex S3") # Development ## Instructions for setup ``` python3 -m venv .venv source .venv/bin/activate pip install -r requirements.txt deactivate ```


نیازمندی

مقدار نام
>=0.16 graphviz


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl attacktree-0.0.2:

    pip install attacktree-0.0.2.whl


نصب پکیج tar.gz attacktree-0.0.2:

    pip install attacktree-0.0.2.tar.gz