معرفی شرکت ها


atom-ml-5.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python package for fast exploration of machine learning pipelines
ویژگی مقدار
سیستم عامل -
نام فایل atom-ml-5.1.1
نام atom-ml
نسخه کتابخانه 5.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Mavs <m.524687@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/atom-ml/
مجوز -
<div align="center"> <p align="center"> <img src="https://github.com/tvdboom/ATOM/blob/master/images/logo.png?raw=true" alt="ATOM" title="ATOM" height="130" width="500"/> </p> # Automated Tool for Optimized Modelling ### A Python package for fast exploration of machine learning pipelines </div> <br><br> 📜 Overview ----------- <p align="center" style="font-size: 1.4em"> <a href="https://github.com/tvdboom" style="text-decoration: none" draggable="false"><img src="https://github.com/tvdboom/ATOM/blob/master/docs_sources/img/icons/avatar.png?raw=true" alt="Author" height=15 width=15 draggable="false" /> Mavs</a> &nbsp;&nbsp;&nbsp;&nbsp; <a href="mailto:m.524687@gmail.com" style="text-decoration: none" draggable="false"><img src="https://github.com/tvdboom/ATOM/blob/master/docs_sources/img/icons/email.png?raw=true" alt="Email" height=13 width=17 draggable="false" /> m.524687@gmail.com</a> &nbsp;&nbsp;&nbsp;&nbsp; <a href="https://tvdboom.github.io/ATOM/" style="text-decoration: none" draggable="false"><img src="https://github.com/tvdboom/ATOM/blob/master/docs_sources/img/icons/documentation.png?raw=true" alt="Documentation" height=17 width=17 draggable="false" /> Documentation</a> &nbsp;&nbsp;&nbsp;&nbsp; <a href="https://join.slack.com/t/atom-alm7229/shared_invite/zt-upd8uc0z-LL63MzBWxFf5tVWOGCBY5g" style="text-decoration: none" draggable="false"><img src="https://github.com/tvdboom/ATOM/blob/master/docs_sources/img/icons/slack.png?raw=true" alt="Slack" height=16 width=16 draggable="false"/> Slack</a> </p> <br> **General Information** | | --- | --- **Repository** | [![Project Status: Active](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![Conda Recipe](https://img.shields.io/badge/recipe-atom--ml-green.svg)](https://anaconda.org/conda-forge/atom-ml) [![License: MIT](https://img.shields.io/github/license/tvdboom/ATOM)](https://opensource.org/licenses/MIT) [![Downloads](https://pepy.tech/badge/atom-ml)](https://pepy.tech/project/atom-ml) **Release** | [![pdm-managed](https://img.shields.io/badge/pdm-managed-blueviolet)](https://pdm.fming.dev) [![PyPI version](https://img.shields.io/pypi/v/atom-ml)](https://pypi.org/project/atom-ml/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/atom-ml.svg)](https://anaconda.org/conda-forge/atom-ml) [![DOI](https://zenodo.org/badge/195069958.svg)](https://zenodo.org/badge/latestdoi/195069958) **Compatibility** | [![Python 3.8\|3.9\|3.10](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10-blue?logo=python)](https://www.python.org) [![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/atom-ml.svg)](https://anaconda.org/conda-forge/atom-ml) **Build status** | [![Build Status](https://github.com/tvdboom/ATOM/workflows/ATOM/badge.svg)](https://github.com/tvdboom/ATOM/actions) [![Azure Pipelines](https://dev.azure.com/conda-forge/feedstock-builds/_apis/build/status/atom-ml-feedstock?branchName=master)](https://dev.azure.com/conda-forge/feedstock-builds/_build/latest?definitionId=10822&branchName=master) [![codecov](https://codecov.io/gh/tvdboom/ATOM/branch/master/graph/badge.svg)](https://codecov.io/gh/tvdboom/ATOM) **Code analysis** | [![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [![code quality](https://api.codiga.io/project/35606/score/svg)](https://app.codiga.io/project/35606/dashboard) [![code grade](https://api.codiga.io/project/35606/status/svg)](https://app.codiga.io/project/35606/dashboard) <br><br> 💡 Introduction --------------- During the exploration phase of a machine learning project, a data scientist tries to find the optimal pipeline for his specific use case. This usually involves applying standard data cleaning steps, creating or selecting useful features, trying out different models, etc. Testing multiple pipelines requires many lines of code, and writing it all in the same notebook often makes it long and cluttered. On the other hand, using multiple notebooks makes it harder to compare the results and to keep an overview. On top of that, refactoring the code for every test can be quite time-consuming. How many times have you conducted the same action to pre-process a raw dataset? How many times have you copy-and-pasted code from an old repository to re-use it in a new use case? ATOM is here to help solve these common issues. The package acts as a wrapper of the whole machine learning pipeline, helping the data scientist to rapidly find a good model for his problem. Avoid endless imports and documentation lookups. Avoid rewriting the same code over and over again. With just a few lines of code, it's now possible to perform basic data cleaning steps, select relevant features and compare the performance of multiple models on a given dataset, providing quick insights on which pipeline performs best for the task at hand. Example steps taken by ATOM's pipeline: 1. Data Cleaning * Handle missing values * Encode categorical features * Detect and remove outliers * Balance the training set 2. Feature engineering * Create new non-linear features * Select the most promising features 3. Train and validate multiple models * Apply hyperparameter tuning * Fit the models on the training set * Evaluate the results on the test set 4. Analyze the results * Get the scores on various metrics * Make plots to compare the model performances <br/><br/> <img src="https://github.com/tvdboom/ATOM/blob/master/images/diagram_pipeline.png?raw=true" alt="diagram_pipeline" title="diagram_pipeline" width="900" height="300" /> <br><br> 🛠️ Installation --------------- Install ATOM's newest release easily via `pip`: $ pip install -U atom-ml or via `conda`: $ conda install -c conda-forge atom-ml <br><br> ⚡ Usage ------- [![SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/tvdboom/ATOM/blob/master/examples/getting_started.ipynb) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/tvdboom/ATOM/HEAD) ATOM contains a variety of classes and functions to perform data cleaning, feature engineering, model training, plotting and much more. The easiest way to use everything ATOM has to offer is through one of the main classes: * [ATOMClassifier](https://tvdboom.github.io/ATOM/latest//API/ATOM/atomclassifier) for binary or multiclass classification tasks. * [ATOMRegressor](https://tvdboom.github.io/ATOM/latest//API/ATOM/atomregressor) for regression tasks. Let's walk you through an example. Click on the SageMaker Studio Lab badge on top of this section to run this example yourself. Make the necessary imports and load the data. ```pycon import pandas as pd from atom import ATOMClassifier # Load the Australian Weather dataset X = pd.read_csv("https://raw.githubusercontent.com/tvdboom/ATOM/master/examples/datasets/weatherAUS.csv") X.head() ``` Initialize the ATOMClassifier or ATOMRegressor class. These two classes are convenient wrappers for the whole machine learning pipeline. Contrary to sklearn's API, they are initialized providing the data you want to manipulate. ```pycon atom = ATOMClassifier(X, y="RainTomorrow", n_rows=1000, verbose=2) ``` Data transformations are applied through atom's methods. For example, calling the [impute](https://tvdboom.github.io/ATOM/latest/API/ATOM/atomclassifier/#impute) method will initialize an [Imputer](https://tvdboom.github.io/ATOM/latest/API/data_cleaning/imputer) instance, fit it on the training set and transform the whole dataset. The transformations are applied immediately after calling the method (no fit and transform commands necessary). ```pycon atom.impute(strat_num="median", strat_cat="most_frequent") atom.encode(strategy="LeaveOneOut", max_onehot=8) ``` Similarly, models are [trained and evaluated](https://tvdboom.github.io/ATOM/latest/user_guide/training) using the [run](https://tvdboom.github.io/ATOM/latest/API/ATOM/atomclassifier/#run) method. Here, we fit both a [LinearDiscriminantAnalysis](https://tvdboom.github.io/ATOM/latest/API/models/lda) and [AdaBoost](https://tvdboom.github.io/ATOM/latest/API/models/adab) model, and apply [hyperparameter tuning](https://tvdboom.github.io/ATOM/latest/user_guide/training/#hyperparameter-tuning). ```pycon atom.run(models=["LDA", "AdaB"], metric="auc", n_trials=10) ``` And lastly, analyze the results. ```pycon atom.evaluate() ``` <br><br> <img src="https://github.com/tvdboom/ATOM/blob/master/docs_sources/img/icons/documentation.png?raw=true" alt="Documentation" height=28 width=28 draggable="false" /> Documentation ---------------- **Relevant links** | | --- | --- ⭐ **[About](https://tvdboom.github.io/ATOM/latest/release_history/)** | Learn more about the package. 🚀 **[Getting started](https://tvdboom.github.io/ATOM/latest/getting_started/)** | New to ATOM? Here's how to get you started! 📢 **[Release history](https://tvdboom.github.io/ATOM/latest/release_history/)** | What are the new features of the latest release? 👨‍💻 **[User guide](https://tvdboom.github.io/ATOM/latest/user_guide/introduction/)** | How to use ATOM and its features. 🎛️ **[API Reference](https://tvdboom.github.io/ATOM/latest/API/ATOM/atomclassifier/)** | The detailed reference for ATOM's API. 📋 **[Examples](https://tvdboom.github.io/ATOM/latest/examples/binary_classification/)** | Example notebooks show you what can be done and how. ❔ **[FAQ](https://tvdboom.github.io/ATOM/latest/faq/)** | Get answers to frequently asked questions. 🔧 **[Contributing](https://tvdboom.github.io/ATOM/latest/contributing/)** | Do you wan to contribute to the project? Read this before creating a PR. 🌳 **[Dependencies](https://tvdboom.github.io/ATOM/latest/dependencies/)** | Which other packages does ATOM depend on? 📃 **[License](https://tvdboom.github.io/ATOM/latest/license/)** | Copyright and permissions under the MIT license.


نیازمندی

مقدار نام
- category-encoders>=2.5.1
- dagshub<=0.2.10
- dill>=0.3.6
- featuretools>=1.23.0
- gplearn>=0.4.2
- imbalanced-learn>=0.10.1
- joblib>=1.1.0
- matplotlib>=3.6.3
- mlflow>=2.2.0
- modin[ray]>=0.18.1
- nltk>=3.8.1
- numpy>=1.23.5
- optuna>=3.1.0
- pandas>=1.5.3
- plotly>=5.13.1
- ray[serve]>=2.3.0
latform_machin scikit-learn-intelex>=2023.0.1;
- scikit-learn>=1.2.1
- scipy>=1.9.3
- shap>=0.41.0
- zoofs>=0.1.26
xtr catboost>=1.1.1;
xtr evalml>=0.68.0;
xtr explainerdashboard>=0.4.2;
xtr gradio>=3.19.1;
xtr lightgbm>=3.3.5;
xtr schemdraw>=0.15;
xtr wordcloud>=1.8.2;
xtr xgboost>=1.7.4;
xtr ydata-profiling>=4.1.0;


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl atom-ml-5.1.1:

    pip install atom-ml-5.1.1.whl


نصب پکیج tar.gz atom-ml-5.1.1:

    pip install atom-ml-5.1.1.tar.gz