معرفی شرکت ها


at16k-0.1.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

at16k is a Python library to perform automatic speech recognition or speech to text conversion.
ویژگی مقدار
سیستم عامل -
نام فایل at16k-0.1.5
نام at16k
نسخه کتابخانه 0.1.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mohit Shah
ایمیل نویسنده mohit@at16k.com
آدرس صفحه اصلی https://github.com/at16k/at16k.git
آدرس اینترنتی https://pypi.org/project/at16k/
مجوز MIT
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://github.com/GlibAI/at16k/graphs/commit-activity) [![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/) [![PyPI license](https://img.shields.io/pypi/l/at16k.svg)](https://pypi.python.org/pypi/at16k/) [![Open Source Love svg1](https://badges.frapsoft.com/os/v1/open-source.svg?v=103)](https://github.com/ellerbrock/open-source-badges/) <img src="https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat"> ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/at16k.svg) [![Downloads](https://pepy.tech/badge/at16k)](https://pepy.tech/project/at16k) # at16k Pronounced as ***at sixteen k***. [Try out the interactive demo here.](https://at16k.com/demo) # What is at16k? at16k is a Python library to perform automatic speech recognition or speech to text conversion. The goal of this project is to provide the community with a production quality speech-to-text library. # Installation It is recommended that you install at16k in a virtual environment. ## Prerequisites - Python >= 3.6 - Tensorflow = 1.14 - Scipy (for reading wav files) ## Install via pip ``` $ pip install at16k ``` ## Install from source Requires: [poetry](https://github.com/sdispater/poetry) ``` $ git clone https://github.com/at16k/at16k.git $ poetry env use python3.6 $ poetry install ``` # Download models Currently, three models are available for speech to text conversion. - en_8k (Trained on English audio recorded at 8 KHz, supports offline ASR) - en_16k (Trained on English audio recorded at 16 KHz, supports offline ASR) - en_16k_rnnt (Trained on English audio recorded at 16 KHz, supports real-time ASR) To download all the models: ``` $ python -m at16k.download all ``` Alternatively, you can download only the model you need. For example: ``` $ python -m at16k.download en_8k $ python -m at16k.download en_16k $ python -m at16k.download en_16k_rnnt ``` By default, the models will be downloaded and stored at <HOME_DIR>/.at16k. To override the default, set the environment variable AT16K_RESOURCES_DIR. For example: ``` $ export AT16K_RESOURCES_DIR=/path/to/my/directory ``` You will need to reuse this environment variable while using the API via command-line, library or REST API. # Preprocessing audio files at16k accepts wav files with the following specs: - Channels: 1 - Bits per sample: 16 - Sample rate: 8000 (en_8k) or 16000 (en_16k) Use ffmpeg to convert your audio/video files to an acceptable format. For example, ``` # For 8 KHz $ ffmpeg -i <input_file> -ar 8000 -ac 1 -ab 16 <output_file> # For 16 KHz $ ffmpeg -i <input_file> -ar 16000 -ac 1 -ab 16 <output_file> ``` # Usage at16k supports two modes for performing ASR - offline and real-time. And, it comes with a handy command line utility to quickly try out different models and use cases. Here are a few examples - ``` # Offline ASR, 8 KHz sampling rate $ at16k-convert -i <path_to_wav_file> -m en_8k # Offline ASR, 16 KHz sampling rate $ at16k-convert -i <path_to_wav_file> -m en_16k # Real-time ASR, 16 KHz sampling rate, from a file, beam decoding $ at16k-convert -i <path_to_wav_file> -m en_16k_rnnt -d beam # Real-time ASR, 16 KHz sampling rate, from mic input, greedy decoding (requires pyaudio) $ at16k-convert -m en_16k_rnnt -d greedy ``` If the ***at16k-convert*** binary is not available for some reason, replace it with - ``` python -m at16k.bin.speech_to_text ... ``` ## Library API Check [this file](https://github.com/at16k/at16k/blob/master/at16k/bin/speech_to_text.py) for examples on how to use at16k as a library. # Limitations The max duration of your audio file should be less than **30 seconds** when using **en_8k**, and less than **15 seconds** when using **en_16k**. An error will not be thrown if the duration exceeds the limits, however, your transcript may contain errors and missing text. # License This software is distributed under the MIT license. # Acknowledgements We would like to thank [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing access to cloud TPUs.


نیازمندی

مقدار نام
==1.14 tensorflow
>=1.3.3,<2.0.0 scipy
>=2.5,<3.0 progressbar
==0.1.82 sentencepiece


زبان مورد نیاز

مقدار نام
>=3.6,<4.0 Python


نحوه نصب


نصب پکیج whl at16k-0.1.5:

    pip install at16k-0.1.5.whl


نصب پکیج tar.gz at16k-0.1.5:

    pip install at16k-0.1.5.tar.gz