معرفی شرکت ها


astroML_addons-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Performance add-ons for the astroML package
ویژگی مقدار
سیستم عامل -
نام فایل astroML_addons-0.2.2
نام astroML_addons
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jake VanderPlas
ایمیل نویسنده vanderplas@astro.washington.edu
آدرس صفحه اصلی http://astroML.github.com
آدرس اینترنتی https://pypi.org/project/astroML_addons/
مجوز BSD
.. -*- mode: rst -*- ============== AstroML addons ============== This package contains addon code for the astroML package, available at http://github.com/astroML/astroML. AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, and matplotlib, and distributed under the 3-Clause BSD license. It contains a growing library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets. This project was started in 2012 by Jake VanderPlas to accompany the book *Statistics, Data Mining, and Machine Learning in Astronomy* by Zeljko Ivezic, Andrew Connolly, Jacob VanderPlas, and Alex Gray. Core and Addons =============== The project is split into two components. The core ``astroML`` library is written in python only, and is designed to be very easy to install for any users, even those who don't have a working C or fortran compiler. A companion library, ``astroML_addons``, can be optionally installed for increased performance on certain algorithms. Every algorithm in ``astroML_addons`` has a pure python counterpart in the core ``astroML`` implementation, but the ``astroML_addons`` library contains faster and more efficient implementations in compiled code. Furthermore, if ``astroML_addons`` is installed on your system, the core ``astroML`` library will import and use the faster routines by default. The reason for this split is the ease of use for newcomers to Python. If the prerequisites are already installed on your system, the core ``astroML`` library can be installed and used on any system with little trouble. The ``astroML_addons`` library requires a C compiler, but is also designed to be easy to install for more advanced users. See further discussion in "Development", below. Important Links =============== - HTML documentation: http://astroML.github.com - Source-code repository: http://github.com/astroML/astroML - Issue Tracker: http://github.com/astroML/astroML/issues - Mailing List: https://groups.google.com/forum/#!forum/astroml-general Installation ============ This package uses distutils, which is the default way of installing python modules. **Before installation, make sure your system meets the prerequisites listed in Dependencies, listed below.** Core ---- To install the core ``astroML`` package in your home directory, use:: pip install astroML The core package is pure python, so installation should be straightforward on most systems. To install from source, refer to http://github.com/astroML/ Addons ------ The ``astroML_addons`` package requires a working C/C++ compiler for installation. It can be installed using:: pip install astroML_addons To install from source, use:: python setup_addons.py install You can specify an arbitrary directory for installation using:: python setup.py install --prefix='/some/path' To install system-wide on Linux/Unix systems:: python setup.py build sudo python setup.py install Dependencies ============ There are three levels of dependencies in astroML. *Core* dependencies are required for the core ``astroML`` package. *Add-on* dependencies are required for the performance ``astroML_addons``. *Optional* dependencies are required to run some (but not all) of the example scripts. Individual example scripts will list their optional dependencies at the top of the file. Core Dependencies ----------------- The core ``astroML`` package requires the following: - Python_ version 2.6.x - 2.7.x (astroML does not yet support python 3.x) - Numpy_ >= 1.4 - Scipy_ >= 0.7 - Scikit-learn_ >= 0.10 - Matplotlib_ >= 0.99 - PyFITS_ >= 3.0. PyFITS is a python reader for Flexible Image Transport System (FITS) files, based on cfitsio. Several of the dataset loaders require pyfits. This configuration matches the Ubuntu 10.04 LTS release from April 2010, with the addition of scikit-learn. To run unit tests, you will also need nose >= 0.10 Add-on Dependencies ------------------- The fast code in ``astroML_addons`` requires a working C/C++ compiler. Optional Dependencies --------------------- Several of the example scripts require specialized or upgraded packages. These requirements are listed at the top of the particular scripts - Scipy_ version 0.11 added a sparse graph submodule. The minimum spanning tree example requires scipy >= 0.11 - PyMC_ provides a nice interface for Markov-Chain Monte Carlo. Several astroML examples use pyMC for exploration of high-dimensional spaces. The examples were written with pymc version 2.2 - HEALPy_ provides an interface to the HEALPix pixelization scheme, as well as fast spherical harmonic transforms. Development =========== This package is designed to be a repository for well-written astronomy code, and submissions of new routines are encouraged. After installing the version-control system Git_, you can check out the latest sources from GitHub_ using:: git clone git://github.com/astroML/astroML.git or if you have write privileges:: git clone git@github.com:astroML/astroML.git Contribution ------------ We strongly encourage contributions of useful astronomy-related code: for `astroML` to be a relevant tool for the python/astronomy community, it will need to grow with the field of research. There are a few guidelines for contribution: General ~~~~~~~ Any contribution should be done through the github pull request system (for more information, see the `help page <https://help.github.com/articles/using-pull-requests>`_ Code submitted to ``astroML`` should conform to a BSD-style license, and follow the `PEP8 style guide <http://www.python.org/dev/peps/pep-0008/>`_. Documentation and Examples ~~~~~~~~~~~~~~~~~~~~~~~~~~ All submitted code should be documented following the `Numpy Documentation Guide`_. This is a unified documentation style used by many packages in the scipy universe. In addition, it is highly recommended to create example scripts that show the usefulness of the method on an astronomical dataset (preferably making use of the loaders in ``astroML.datasets``). These example scripts are in the ``examples`` subdirectory of the main source repository. Add-on code ~~~~~~~~~~~ We made the decision early-on to separate the core routines from high-performance compiled routines. This is to make sure that installation of the core package is as straightforward as possible (i.e. not requiring a C compiler). Contributions of efficient compiled code to ``astroML_addons`` is encouraged: the availability of efficient implementations of common algorithms in python is one of the strongest features of the python universe. The preferred method of wrapping compiled libraries is to use `cython <http://www.cython.org>`_; other options (weave, SWIG, etc.) are harder to build and maintain. Currently, the policy is that any efficient algorithm included in ``astroML_addons`` should have a duplicate python-only implementation in ``astroML``, with code that selects the faster routine if it's available. (For an example of how this works, see the definition of the ``lomb_scargle`` function in ``astroML/periodogram.py``). This policy exists for two reasons: 1. it allows novice users to have all the functionality of ``astroML`` without requiring the headache of complicated installation steps. 2. it serves a didactic purpose: python-only implementations are often easier to read and understand than equivalent implementations in C or cython. 3. it enforces the good coding practice of avoiding premature optimization. First make sure the code works (i.e. write it in simple python). Then create an optimized version in the addons. If this policy proves especially burdensome in the future, it may be revisited. .. _Numpy Documentation Guide: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt Authors ======= Package Author -------------- * Jake Vanderplas <vanderplas@astro.washington.edu> http://jakevdp.github.com Code Contribution ----------------- * Morgan Fouesneau https://github.com/mfouesneau * Julian Taylor http://github.com/juliantaylor .. _Python: http://www.python.org .. _Numpy: http://www.numpy.org .. _Scipy: http://www.scipy.org .. _Scikit-learn: http://scikit-learn.org .. _Matplotlib: http://matplotlib.org .. _PyFITS: http://www.stsci.edu/institute/software_hardware/pyfits .. _PyMC: http://pymc-devs.github.com/pymc/ .. _HEALPy: https://github.com/healpy/healpy> .. _Git: http://git-scm.com/ .. _GitHub: http://www.github.com


نحوه نصب


نصب پکیج whl astroML_addons-0.2.2:

    pip install astroML_addons-0.2.2.whl


نصب پکیج tar.gz astroML_addons-0.2.2:

    pip install astroML_addons-0.2.2.tar.gz