معرفی شرکت ها


astro-delight-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep Learning Identification of Galaxy Hosts in Transients, a package to automatically identify host galaxies of transient candidates
ویژگی مقدار
سیستم عامل POSIX :: Linux
نام فایل astro-delight-0.0.5
نام astro-delight
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Francisco Förster
ایمیل نویسنده francisco.forster@gmail.com
آدرس صفحه اصلی https://github.com/fforster/delight
آدرس اینترنتی https://pypi.org/project/astro-delight/
مجوز GNU GPLv3
<p float="left"> <img src="http://alerce.science/static/img/alerce_logo.cc79ccea2406.png" alt="drawing" width="300"/> &nbsp; &nbsp; &nbsp;&nbsp; <img src="https://raw.githubusercontent.com/fforster/DELIGHT/main/figures/Delight.png" alt="drawing" width="200"/> </p> The **Deep Learning Identification of Galaxy Hosts in Transients (DELIGHT, Förster et al. 2022, *in preparation*)** is a library created by the [ALeRCE broker](http://alerce.science) to automatically identify host galaxies of transient candidates using multi-resolution images and a convolutional neural network (you can test it with our [example notebook](https://nbviewer.org/github/fforster/DELIGHT/blob/main/notebook/Delight_example_notebook.ipynb)). You can install it using `pip install astro-delight`, but we recommend cloning this repository and `pip install .` from there. The library has a class with several methods that allow you to get the most likely host coordinates starting from given transient coordinates. In order to do this, the delight object needs a list of object identifiers and coordinates (`oid, ra, dec`). With this information, it downloads [PanSTARRS](https://outerspace.stsci.edu/display/PANSTARRS/) images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. It can also estimate the host's semi-major axis if requested taking advantage of the multi-resolution images. Note that DELIGHT's prediction time is currently dominated by the time to download [PanSTARRS](https://outerspace.stsci.edu/display/PANSTARRS/) images using the [panstamps service](https://panstamps.readthedocs.io/en/master/). In the future, we expect that there will be services that directly provide multi-resolution images, which should be more lightweight with no significant loss of information. Once these images are obtained, the processing times are only milliseconds per host. --- *Classes*: * **Delight**: the main class containing the methods to predict host galaxy positions starting from transient coordinates *Methods* (most important): * **init**: class constructor, it requires a list of object identifiers, a list of right ascensions, and a list of declinations * **download**: downloads [PanSTARRS](https://outerspace.stsci.edu/display/PANSTARRS/) fits files using the [panstamps](https://panstamps.readthedocs.io/en/master/) servive. * **get_pix_coords**: gets the WCS solution in the fits files to move from pixel to celestial coordinates. * **compute_multiresolution**: transform the [PanSTARRS](https://outerspace.stsci.edu/display/PANSTARRS/) images to multi-resolution images * **load_model**: load DELIGHT's [Tensorflow](https://www.tensorflow.org/) model * **predict**: predict the host positions * **plot_host**: plot the original host image, the multi-resolution images, and the transient and predicted host position * **get_hostsize**: estimate the host semi-major axis * **save**: save the resulting dataframe * **load**: load the resulting dataframe *Requirements*: * xarray (`python -m pip install xarray`) * astropy (`pip install astropy`) * sep (`pip install sep`) * tensorflow (https://www.tensorflow.org/install/pip, `pip install tensorflow`) * pantamps (`pip install panstamps`) --- **DELIGHT's multi-resolution images and prediction vector:** <img src="https://raw.githubusercontent.com/fforster/DELIGHT/main/figures/multi-resolution.png" alt="drawing" width="800"/> **DELIGHT's neural network architecture:** <img src="https://raw.githubusercontent.com/fforster/DELIGHT/main/figures/delight_architecture.png" alt="drawing" width="800"/>


نیازمندی

مقدار نام
- astropy
- sep
- xarray
- panstamps
- matplotlib
- numpy
- tensorflow


نحوه نصب


نصب پکیج whl astro-delight-0.0.5:

    pip install astro-delight-0.0.5.whl


نصب پکیج tar.gz astro-delight-0.0.5:

    pip install astro-delight-0.0.5.tar.gz