.. image:: https://badge.fury.io/py/astar.svg
:target: https://badge.fury.io/py/astar
.. image:: https://travis-ci.com/jrialland/python-astar.svg?branch=master
:target: https://travis-ci.com/jrialland/python-astar
.. image:: https://coveralls.io/repos/github/jrialland/python-astar/badge.svg?branch=master
:target: https://coveralls.io/github/jrialland/python-astar?branch=master
.. image:: https://img.shields.io/github/stars/jrialland/python-astar
:target: https://github.com/jrialland/python-astar
.. image:: https://img.shields.io/github/forks/jrialland/python-astar
:target: https://github.com/jrialland/python-astar
python-astar
============
This is a simple implementation of the `a-star path finding
algorithm <https://en.wikipedia.org/wiki/A*_search_algorithm>`__ in
python
Documentation
-------------
The astar module defines the AStar class, which has to be inherited from
and completed with the implementation of several methods :
neighbors
~~~~~~~~~
.. code:: py
@abstractmethod
def neighbors(self, node)
For a given node, returns (or yields) the list of its neighbors. this
method must be implemented in a subclass
This is the method that one would provide in order to give to the
algorithm the description of the graph to use during for computation
This method must be implemented in a subclass.
distance\_between
~~~~~~~~~~~~~~~~~
.. code:: py
@abstractmethod
def distance_between(self, n1, n2)
Gives the real distance/cost between two adjacent nodes n1 and n2 (i.e
n2 belongs to the list of n1's neighbors). n2 is guaranteed to belong to
the list returned by a call to neighbors(n1).
This method must be implemented in a subclass.
heuristic\_cost\_estimate
~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: py
@abstractmethod
def heuristic_cost_estimate(self, current, goal)
Computes the estimated (rough) distance/cost between a node and the
goal. The first argument is the start node, or any node that have been
returned by a call to the neighbors() method.
This method is used to give to the algorithm an hint about the node he
may try next during search.
This method must be implemented in a subclass.
is\_goal\_reached
~~~~~~~~~~~~~~~~~
.. code:: py
def is_goal_reached(self, current, goal)
This method shall return a truthy value when the goal is 'reached'. By
default it checks that current == goal.
"Functional" API.
~~~~~~~~~~~~~~~~~
If you dislike to have to inherit from the AStar class and create an instance in order to run the algorithm, the module also provides a "find_path" function, which takes functions as parameters and provides reasonnable defaults for some of them.
See <https://github.com/jrialland/python-astar/blob/master/tests/basic/test_basic.py>
.. code:: py
def find_path(
start,
goal,
neighbors_fnct,
reversePath=False,
heuristic_cost_estimate_fnct = lambda a, b: Infinite,
distance_between_fnct = lambda a, b: 1.0,
is_goal_reached_fnct = lambda a, b: a == b
)
Examples
--------
Maze solver
~~~~~~~~~~~
This script generates an ascii maze, and finds the path between the upper left corner and the bottom right
``PYTHONPATH=. python tests/maze/test_maze.py``
::
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|#### | | | | | |
+--+# + + + + +--+--+--+ + +--+ +--+--+--+ +--+ + +
| ### | | | | | | | | | | | |
+ #+--+--+ + + +--+ +--+ + +--+--+ + +--+--+ +--+ +
| #| | | | | | | | | | | |
+ #+ +--+--+ + + +--+ +--+ + +--+--+ + + + + +--+
| #| | | | | | | | | | |
+ #+--+--+ + + +--+ +--+ + +--+--+ +--+--+--+--+--+ +
| # | | | | | | ### | | | | |
+ #+--+--+ + + + +--+--+--+--+ #+# + +--+ + +--+ + +
| # | | ####| ####|# | | | | | |
+ #+--+--+--+--+--+--+--+ #+ #+ #+--+# + + + +--+ + + +
| #| ####| #######| ####| ### | | | | |
+ #+--+ #+ #+--+--+ #+--+--+--+--+ #+--+ +--+--+--+ +--+--+
| ####| #| ##########| | ### | | ###### | |
+--+ #+ #+--+--+--+--+ +--+--+ +--+# +--+ #+--+# +--+--+ +
| | ####| | | |########| |##| ### | |
+ +--+--+ +--+ + +--+ +--+--+ +--+--+--+ + #+ #+# + +
| | | | | | | ####|#### |
+ +--+--+--+ + + + +--+ +--+--+--+--+--+ +--+--+--+# +
| | | | | | ####| | | ###### |
+ + +--+--+--+--+--+ + +--+--+##+ #+--+ +--+ + #+--+--+
| | | | | | ###### | ####| | ### | |
+ +--+ + +--+--+ +--+ + #+--+--+--+ #+--+--+--+--+# + +
| | | | | ###### | | ############ |# | |
+--+--+--+ + + +--+--+ +--+--+# + +--+--+--+--+# +# + +
| | | | | ###### | ##########| |#### | |
+ +--+ +--+--+ + +--+--+ #+--+--+ #+--+--+ #+ +--+--+ +
| | | | | ####| | #######| ############ |
+ +--+--+ + +--+ +--+ #+--+--+ + +--+ #+--+--+--+--+# +
| | | | | ####| ####| | #| ### | |##|
+--+--+ + +--+ + + #+--+ #+ #+--+--+ + #+ #+# + + + #+
| | | | | #######| ####| | #| #|# | | | #|
+ +--+ + + +--+--+--+--+--+--+ #+--+--+ #+ #+# +--+ + #+
| | | | | | #| ####| ####|# | | #|
+ + +--+ + + +--+--+--+--+ + #+ #+ #+--+--+# + + + #+
| | | | | | | | ####| ######### | | | #|
+ +--+ +--+ +--+--+ + + + +--+--+--+--+--+--+ +--+ #+
| | | | #|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
London Underground
~~~~~~~~~~~~~~~~~~
This script finds the shortest path between two underground stations, based on a list of London's stations
``PYTHONPATH=. python tests/london/test_london_underground.py Chesham Beckton``
::
Chesham
Chalfont & Latimer
Chorleywood
Rickmansworth
Moor Park
Northwood
Northwood Hills
Pinner
North Harrow
Harrow-on-the-Hill
Northwick Park
Preston Road
Wembley Park
Finchley Road
Baker Street
Bond Street
Oxford Circus
Tottenham Court Road
Holborn
Chancery Lane
St. Paul's
Bank
Shadwell
Limehouse
Westferry
Poplar
Blackwall
East India
Canning Town
Royal Victoria
Custom House
Prince Regent
Royal Albert
Beckton Park
Cyprus
Gallions Reach
Beckton
TAN Network
~~~~~~~~~~~
A solution for a codingame's puzzle (https://www.codingame.com/training/hard/tan-network)
``PYTHONPATH=. python tests/tan_network/test_tan_network_5.py``
.. code:: sh
.
----------------------------------------------------------------------
Ran 1 test in 0.010s
OK