معرفی شرکت ها


asprin-3.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Qualitative and quantitative optimization in answer set programming
ویژگی مقدار
سیستم عامل -
نام فایل asprin-3.1.0
نام asprin
نسخه کتابخانه 3.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Javier Romero
ایمیل نویسنده javier@cs.uni-potsdam.de
آدرس صفحه اصلی https://github.com/potassco/asprin
آدرس اینترنتی https://pypi.org/project/asprin/
مجوز MIT
# asprin > A general framework for qualitative and quantitative optimization in answer set programming. ## Description `asprin` is a general framework for optimization in ASP that allows: * computing optimal stable models of logic programs with preferences, and * defining new preference types in a very easy way. Some preference types (`subset`, `pareto`...) are already defined in `asprin`'s library, but many more can be defined simply writing a logic program. For a formal description of `asprin`, please read our [paper](http://www.cs.uni-potsdam.de/wv/pdfformat/brderosc15a.pdf) ([bibtex](http://www.cs.uni-potsdam.de/wv/bibtex/brderosc15a.bib)). Starting with version 3, `asprin` is documented in the [Potassco guide](https://github.com/potassco/guide/releases/). Older versions are documented in the [Potassco guide on Sourceforge](https://sourceforge.net/projects/potassco/files/guide/). ## Usage ```bash $ asprin [number_of_models] [options] [files] ``` By default, `asprin` loads its library `asprin_lib.lp`. This may be disabled with option `--no-asprin-lib`. Option `--help` prints help. Options `--approximation=weak` and `--approximation=heuristic` activate solving modes different than the basic ones, and are often faster than it. Option `--meta=query` can be used to compute optimal models that contain the atom `query`. Options `--meta=simple` or `--meta=combine` should be used to compute many optimal models using non stratified preference programs (in `asprin`'s library this can only happen with CP nets, see below). Option `--on-opt-heur` can be used to enumerate diverse (or similar) optimal stable models. For example, try with `--on-opt-heur=+,p,1,false --on-opt-heur=-,p,1,true`. Option `--improve-limit` can be used to enumerate close to optimal stable models. For example, try with `--improve-limit 2,1000`. ## Building <!--- TO BE CHANGED --> The easiest way to obtain `asprin` is using Anaconda. Packages are available in the Potassco channel. First install either Anaconda or Miniconda and then run: `conda install -c potassco asprin`. <!--- --> `asprin` can also be installed with [pip](https://pip.pypa.io) via ```pip install asprin```. For a local installation, add option ```--user```. In this case, setting environment variable `PYTHONUSERBASE` to `dir` before running `pip`, `asprin` will be installed in `dir/bin/asprin`. <!--- TO BE CHANGED --> If that does not work, you can always download the sources from [here](https://github.com/potassco/asprin/releases/download/v3.1.0/asprin-3.1.0.tar.gz) in some directory `dir`, and run `asprin` with `python dir/asprin/asprin/asprin.py`. <!--- --> System tests may be run with ```asprin --test``` and ```asprin --test --all```. `asprin` has been tested with `Python 2.7.13` and `3.5.3`, using `clingo 5.3.0`. ```asprin``` uses the `ply` library, version `3.11`, which is bundled in [asprin/src/spec_parser/ply](https://github.com/potassco/asprin/tree/master/asprin/src/spec_parser/ply), and was retrieved from http://www.dabeaz.com/ply/. ## Examples ``` $ cat examples/example1.lp dom(1..3). 1 { a(X) : dom(X) }. #show a/1. #preference(p,subset) { a(X) }. #optimize(p). $ asprin examples/example1.lp 0 asprin version 3.0.0 Reading from examples/example1.lp Solving... Answer: 1 a(3) OPTIMUM FOUND Answer: 2 a(2) OPTIMUM FOUND Answer: 3 a(1) OPTIMUM FOUND Models : 3 Optimum : yes Optimal : 3 $ cat examples/example2.lp % % base program % dom(1..3). 1 { a(X) : dom(X) } 2. 1 { b(X) : dom(X) } 2. #show a/1. #show b/1. % % basic preference statements % #preference(p(1),subset){ a(X) }. #preference(p(2),less(weight)){ X :: b(X) }. #preference(p(3),aso){ a(X) >> not a(X) || b(X) }. #preference(p(4),poset){ a(X); b(X); a(X) >> b(X) }. % % composite preference statements % #preference(q,pareto){ **p(X) }. #preference(r,neg){ **q }. % % optimize statement % #optimize(r). $ asprin examples/example2.lp asprin version 3.0.0 Reading from examples/example2.lp Solving... Answer: 1 a(3) b(1) OPTIMUM FOUND Models : 1+ Optimum : yes ``` ## CP nets `asprin` preference library implements the preference type `cp`, that stands for *CP nets*. CP nets where introduced in the following paper: * Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. 21: 135-191 (2004) Propositional preference elements of type `cp` have one of the following forms: 1. `a >> not a || { l1; ...; ln }`, or 2. `not a >> a || { l1; ...; ln }` where `a` is an atom and `l1`, ..., `ln` are literals. The semantics is defined using the notion of improving flips. Let `X` and `Y` be two interpretations of a logic program. There is an improving flip from `X` to `Y` if there is some preference element such that `X` and `Y` satisfy all `li`'s, and either the element has the form (1) and `Y` is the union of `X` and `{a}`, or the element has the form (2) and `Y` is `X` minus `{a}`. Then, `W` is better than `Z` if there is a sequence of improving flips from `W` to `Z`. A CP net is consistent if there is no interpretation `X` such that `X` is better than `X`. We provide various encoding and solving techniques for CP nets, that can be applied depending on the structure of the CP net. For tree-like CP nets, see example [cp_tree.lp](https://github.com/potassco/asprin/blob/master/asprin/examples/cp_tree.lp). For acyclic CP nets, see example [cp_acyclic.lp](https://github.com/potassco/asprin/blob/master/asprin/examples/cp_acyclic.lp). For general CP nets, see example [cp_general.lp](https://github.com/potassco/asprin/blob/master/asprin/examples/cp_general.lp). `asprin` implementation of CP nets is correct only for consistent CP nets. Note that tree-like and acyclic CP nets are always consistent, but this does not hold in general. ## Contributors * Javier Romero


نحوه نصب


نصب پکیج whl asprin-3.1.0:

    pip install asprin-3.1.0.whl


نصب پکیج tar.gz asprin-3.1.0:

    pip install asprin-3.1.0.tar.gz