معرفی شرکت ها


asmc-asmc-1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ASMC is a method to efficiently estimate pairwise coalescence time along the genome
ویژگی مقدار
سیستم عامل -
نام فایل asmc-asmc-1.3
نام asmc-asmc
نسخه کتابخانه 1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده PalamaraLab (https://palamaralab.github.io/)
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/PalamaraLab/ASMC/
آدرس اینترنتی https://pypi.org/project/asmc-asmc/
مجوز -
[![Unit tests: Ubuntu](https://github.com/PalamaraLab/ASMC/actions/workflows/ubuntu-unit.yml/badge.svg)](https://github.com/PalamaraLab/ASMC/actions/workflows/ubuntu-unit.yml) [![Unit tests: macOS](https://github.com/PalamaraLab/ASMC/actions/workflows/macos-unit.yml/badge.svg)](https://github.com/PalamaraLab/ASMC/actions/workflows/macos-unit.yml) [![Python 3.8 3.11](https://github.com/PalamaraLab/ASMC/actions/workflows/ubuntu-python.yml/badge.svg)](https://github.com/PalamaraLab/ASMC/actions/workflows/ubuntu-python.yml) [![Regression test](https://github.com/PalamaraLab/ASMC/workflows/Regression%20test/badge.svg)](https://github.com/PalamaraLab/ASMC/actions) [![Ubuntu asan](https://github.com/PalamaraLab/ASMC/workflows/Ubuntu%20asan/badge.svg)](https://github.com/PalamaraLab/ASMC/actions) [![Ubuntu no sse/avx](https://github.com/PalamaraLab/ASMC/workflows/Ubuntu%20no%20sse/avx/badge.svg)](https://github.com/PalamaraLab/ASMC/actions) [![codecov](https://codecov.io/gh/PalamaraLab/ASMC/branch/main/graph/badge.svg)](https://codecov.io/gh/PalamaraLab/ASMC) # ASMC and FastSMC This repository contains ASMC and an extension, FastSMC, together with python bindings for both. ## Quickstart ### Install the Python module from PyPI Most functionality is available through a Python module which can be installed with: ```bash pip install asmc-asmc ``` ### Documentation The following pages of documentation contains specific information: - [Quickstart guide for users](https://github.com/PalamaraLab/ASMC/blob/main/docs/quickstart_user.md) - [ASMC python docs](https://github.com/PalamaraLab/ASMC/blob/main/docs/asmc_python.md) - [FastSMC python docs](https://github.com/PalamaraLab/ASMC/blob/main/docs/fastsmc_python.md) This Python module is currently available on Linux and macOS. Example Jupyter notebooks showcasing basic functionality can be found here: - [Example notebooks](https://github.com/PalamaraLab/ASMC/tree/main/notebooks) ## License ASMC and FastSMC are distributed under the GNU General Public License v3.0 (GPLv3). For any questions or comments on ASMC, please contact Pier Palamara using `<lastname>@stats.ox.ac.uk`. ## Reference If you use this software, please cite the appropriate reference(s) below. The ASMC algorithm and software were developed in - P. Palamara, J. Terhorst, Y. Song, A. Price. High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. *Nature Genetics*, 2018. The FastSMC algorithm and software were developed in - J. Nait Saada, G. Kalantzis, D. Shyr, F. Cooper, M. Robinson, A. Gusev, P. F. Palamara. Identity-by-descent detection across 487,409 British samples reveals fine-scale evolutionary history and trait associations. *Nature Communications*, 2020. # ASMC Release Notes ## v1.3 (2023-03-03) ### Breaking changes None ### Other changes - Decoding a batch can now be done in a selected subregion with from / to indices. A `cm_burn_in` parameter takes into account additional variants on either side of the subregion for HMM burn-in. - Allow the user to access selected attributes of the DecodingParams and Data from the ASMC object. - Python continuous integration now uses Python 3.8 and 3.11 (previously 3.6 and 3.9) - Update Catch to v2.13. ## v1.2 (2021-09-28) All functionality for ASMC and FastSMC is now in this repository ([link](https://github.com/PalamaraLab/ASMC)). ### Breaking changes - Fixed an issue with demographic models. The `CEU.demo` demographic model and the decoding quantities for CEU+UKBB previously provided in the repository were mistakenly encoded as diploid rather than haploid. CEU.demo and CEU+UKBB decoding quantities have now been updated and can be found in [this repository](https://github.com/PalamaraLab/ASMC_data). Also see the manual for a note on how this affects analyses. ### Other changes - New API for decoding pairs with ASMC. In addition to running full analyses as described in the ASMC paper, users can now decode specific pairs and get back a variety of summary statistics. See the [ASMC python documentation](https://github.com/PalamaraLab/ASMC/blob/main/docs/asmc_python.md) for details. - New, more extensive, [documentation](https://github.com/PalamaraLab/ASMC/blob/main/docs/) is available. ## v1.1 (2021-01-20) [Legacy repository](https://github.com/PalamaraLab/FastSMC/releases/tag/v1.1) Improvements to documentation and default use. No changes to any core functionality. ### Breaking changes - The hashing functionality, previously named `GERMLINE`, has been renamed to `hashing`. This includes the command line flag for turning this behaviour on/off, which is now `--hashing`. ### Other changes - `--hashing` is now ON by default when running the FastSMC executable: previously, `--GERMLINE` was OFF by default. - Extra output, including the IBD segment length, posterior mean, and MAP, are now on by default. This behaviour can be toggled with the flags `--segmentLength`, `--perPairPosteriorMeans`, `--perPairMAP`. - An example script has been added to `cpp_example/FastSMC_example_multiple_jobs.sh` that demonstrates how to run FastSMC with multiple jobs simultaneously. - The README has been updated to focus on FastSMC functionality. - More robust checking is now used to verify the decoding quantities file is correct before reading it. - CMake will now, by default, build in Release mode (giving 03 optimisation on Linux). Previously, Debug was used by default. ## v1.0 (2020-09-18) [Legacy repository](https://github.com/PalamaraLab/FastSMC/releases/tag/v1.0) First public release of FastSMC, with functionality as described and used in [this paper](https://doi.org/10.1038/s41467-020-19588-x).


نیازمندی

مقدار نام
- jupyter
- numpy
- pandas
- asmc-preparedecoding
- matplotlib


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl asmc-asmc-1.3:

    pip install asmc-asmc-1.3.whl


نصب پکیج tar.gz asmc-asmc-1.3:

    pip install asmc-asmc-1.3.tar.gz