معرفی شرکت ها


asgl-1.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A regression solver for linear and quantile regression models and lasso based penalizations
ویژگی مقدار
سیستم عامل -
نام فایل asgl-1.0.5
نام asgl
نسخه کتابخانه 1.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alvaro Mendez Civieta
ایمیل نویسنده almendez@est-econ.uc3m.es
آدرس صفحه اصلی https://github.com/alvaromc317/asgl
آدرس اینترنتی https://pypi.org/project/asgl/
مجوز GNU General Public License
# `asgl` package ## Introduction `asgl` is a Python package that solves several regression related models for simultaneous variable selection and prediction, in low and high dimensional frameworks. This package is directly related to research work shown on [this paper](https://link.springer.com/article/10.1007/s11634-020-00413-8). The current version of the package supports: * Linear regression models * Quantile regression models And considers the following penalizations for variable selection: * No penalized models * lasso * group lasso * sparse group lasso * adaptive lasso * adaptive group lassso * adaptive sparse group lasso ## Requirements The package makes use of some basic functions from `scikit-learn` and `numpy`, and is built on top of the wonderful `cvxpy` convex optimization module. It is higly encouraged to install `cvxpy` prior of the installation of `asgl` following the instructions from the original authors, that can be found [here](https://www.cvxpy.org/)). Additionally, `asgl` makes use of python `multiprocessing` module, allowing, if requested, for parallel execution of the code highly reducing computation time. ## Usage example: In the following example we will analyze the `BostonHousing` dataset (available [here](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston)). Even though the `asgl` package can easily deal with much more complex datasets, we will work using this one so we are not affected by computation time. We will show how to implement cross validation on a grid of possible parameter values for an sparse group lasso linear model, how to find the optimal parameter values and finally, how to compute the test error. #### Example: The following code performs cross validation in a grid of different parameter values for an sparse group lasso model on the well known `BostonHousing` dataset: ``` # Import required packages import numpy as np from sklearn.datasets import load_boston import asgl # Import test data # boston = load_boston() x = boston.data y = boston.target group_index = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5]) # Define parameters grid lambda1 = (10.0 ** np.arange(-3, 1.51, 0.2)) # 23 possible values for lambda alpha = np.arange(0, 1, 0.05) # 20 possible values for alpha # Define model parameters model = 'lm' # linear model penalization = 'sgl' # sparse group lasso penalization parallel = True # Code executed in parallel error_type = 'MSE' # Error measuremente considered. MSE stands for Mean Squared Error. # Define a cross validation object cv_class = asgl.CV(model=model, penalization=penalization, lambda1=lambda1, alpha=alpha, nfolds=5, error_type=error_type, parallel=parallel, random_state=99) # Compute error using k-fold cross validation error = cv_class.cross_validation(x=x, y=y, group_index=group_index) num_models, k_folds = error.shape # error is a matrix of shape (number_of_models, k_folds) print(f'We are considering a grid of {num_models} models, optimized based on {k_folds}-folds cross validation') # Obtain the mean error across different folds error = np.mean(error, axis=1) ``` For a full review on the capabilities of these package we suggest accessing the user_guide notebook provided in the [GitHub repository](https://github.com/alvaromc317/asgl). Additionally, you can find more [here](https://towardsdatascience.com/sparse-group-lasso-in-python-255e379ab892) and [here](https://towardsdatascience.com/an-adaptive-lasso-63afca54b80d). ### Citing ___ If you use ASGL for academic work, we encourage you to [cite our paper](https://link.springer.com/article/10.1007/s11634-020-00413-8). Thank you for your support and we hope you find this package useful!


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl asgl-1.0.5:

    pip install asgl-1.0.5.whl


نصب پکیج tar.gz asgl-1.0.5:

    pip install asgl-1.0.5.tar.gz