معرفی شرکت ها


arules-0.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

multi-purpose association rules analysis
ویژگی مقدار
سیستم عامل -
نام فایل arules-0.0.0
نام arules
نسخه کتابخانه 0.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Abir Koren
ایمیل نویسنده abir@wnwd.com
آدرس صفحه اصلی https://github.com/windward-ltd/arules
آدرس اینترنتی https://pypi.org/project/arules/
مجوز MIT
# Arules - multi-purpose association rules Arules is an open-source python package for association rules creation. It allows creation of association rules over tabular data (pandas dataframe). While standard association rules require transactional data, arules considers association rules as an analysis utility for categorical data. The Package also supports association rules over continuous data by application of binning methods (some basic methods are included in the package but users can define their own binning functions). ## Installation Python 3.6+ | Linux, Mac OS X, Windows ```sh pip install -U arules ``` ## Getting Started Let's create some association rules over some tabular data ```python import pandas as pd anes96 = pd.read_csv("anes96.csv") anes96.head() | popul | TVnews | selfLR | ClinLR | DoleLR | PID | age | educ | income | vote | logpopul | |-------|--------|------------------------|-------------------|-----------------------|------------------|------|----------------------|--------------------------|---------|--------------------| | 0.0 | 7.0 | Extremely Conservative | Extremely liberal | Conservative | Strong Republica | 36.0 | High school graduate | None or less than $2,999 | Dole | -2.302585092994045 | | 190.0 | 1.0 | Slightly liberal | Slightly liberal | Slightly conservative | Weak Democrat | 20.0 | Some college | None or less than $2,999 | Clinton | 5.247550249494384 | | 31.0 | 7.0 | Liberal | Liberal | Conservative | Weak Democrat | 24.0 | Master's degree | None or less than $2,999 | Clinton | 3.4372078191851885 | | 83.0 | 4.0 | Slightly liberal | Moderate | Slightly conservative | Weak Democrat | 28.0 | Master's degree | None or less than $2,999 | Clinton | 4.4200447018614035 | | 640.0 | 7.0 | Slightly conservative | Conservative | Moderate | Strong Democrat | 68.0 | Master's degree | None or less than $2,999 | Clinton | 6.461624414147957 | ``` Note that the table contains both categorical and continuous fields (which can be handled using a selected binning method). Now we use arules to extract association rules according to a specification of interest ```python import arules as ar from arules.utils import five_quantile_based_bins, top_bottom_10, top_5_variant_variables rules, supp_dict = ar.create_association_rules(anes96,max_cols=2,binning_method=five_quantile_based_bins) ``` After the calculation is done we can present rules of selection for analysis purposes ```python ar.present_rules_per_consequent(rules,consequent={'vote':'Clinton'}, selection_function=top_5_variant_variables, drop_dups=True, plot=True) ``` ![PID rules](https://raw.githubusercontent.com/windward-ltd/arules/master/examples/assets/PID.png?raw=true) ![selfLR rules](https://raw.githubusercontent.com/windward-ltd/arules/master/examples/assets/selfLR.png?raw=true) ![ClinLR rules](https://raw.githubusercontent.com/windward-ltd/arules/master/examples/assets/ClinLR.png?raw=true) ![DoleLR rules](https://raw.githubusercontent.com/windward-ltd/arules/master/examples/assets/DoleLR.png?raw=true) ![Income rules](https://raw.githubusercontent.com/windward-ltd/arules/master/examples/assets/Income.png?raw=true) As we set the consequent to be: {'vote':'Clinton'}, the presented rules reflect the likelihood of an individual to vote for clinton given the respective feature. For example, if we consider the income variable above, a person with an income of 3,000-4,999 (which populates, according to the barchart, 1% of the sample) is approximately 1.6 times more likely (w.r.t. the average) to vote for Clinton, while a person with an income of 90,000-104,999 (which populates, according to the barchart, 4% of the sample) is approximately 1.4 times less likely to vote for Clinton. ## Contributing Please read [CONTRIBUTING.md](CONTRIBUTING.md) for details on our code of conduct, and the process for submitting pull requests to us. ## Versioning We use [SemVer](http://semver.org/) for versioning. For the versions available. ## Authors * **Abir Koren** - *Initial work* - [WindWard](https://github.com/windward-ltd) ## License This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details


نیازمندی

مقدار نام
- pandas
- numpy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl arules-0.0.0:

    pip install arules-0.0.0.whl


نصب پکیج tar.gz arules-0.0.0:

    pip install arules-0.0.0.tar.gz