معرفی شرکت ها


articat-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

articat: data artifact catalog
ویژگی مقدار
سیستم عامل -
نام فایل articat-0.1.9
نام articat
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Related Sciences LLC
ایمیل نویسنده rav@related.vc
آدرس صفحه اصلی https://github.com/related-sciences/articat
آدرس اینترنتی https://pypi.org/project/articat/
مجوز Apache
# articat [![CI](https://github.com/related-sciences/articat/actions/workflows/build.yml/badge.svg?branch=main)](https://github.com/related-sciences/articat/actions/workflows/build.yml) [![PYPI](https://img.shields.io/pypi/v/articat.svg)](https://pypi.org/project/articat/) Minimal metadata catalog to store and retrieve metadata about data artifacts. ## Getting started At a high level, *articat* is simply a key-value store. Value being the Artifact metadata. Key a.k.a. "Artifact Spec" being: * globally unique `id` * optional timestamp: `partition` * optional arbitrary string: `version` To publish a file system Artifact (`FSArtifact`): ```python from articat import FSArtifact from pathlib import Path from datetime import date # Apart from being a metadata containers, Artifact classes have optional # convenience methods to help in data publishing flow: with FSArtifact.partitioned("foo", partition=date(1643, 1, 4)) as fsa: # To create a new Artifact, always use `with` statement, and # either `partitioned` or `versioned` methods. Use: # * `partitioned(...)`, for Artifacts with explicit `datetime` partition # * `versioned(...)`, for Artifacts with explicit `str` version # Next we produce some local data, this could be a Spark job, # ML model etc. data_path = Path("/tmp/data") data_path.write_text("42") # Now let's stage that data, temporary and final data directories/buckets # are configurable (see below) fsa.stage(data_path) # Additionally let's provide some description, here we could also # save some extra arbitrary metadata like model metrics, hyperparameters etc. fsa.metadata.description = "Answer to the Ultimate Question of Life, the Universe, and Everything" ``` To retrieve the metadata about the Artifact above: ```python from articat.fs_artifact import FSArtifact from datetime import date from pathlib import Path # To retrieve the metadata, use Artifact object, and `fetch` method: fsa = FSArtifact.partitioned("foo", partition=date(1643, 1, 4)).fetch() fsa.id # "foo" fsa.created # <CREATION-TIMESTAMP> fsa.partition # <CREATION-TIMESTAMP> fsa.metadata.description # "Answer to the Ultimate Question of Life, the Universe, and Everything" fsa.main_dir # Data directory, this is where the data was stored after staging Path(fsa.joinpath("data")).read_text() # 42 ``` ## Features * store and retrieve metadata about your data artifacts * no long running services (low maintenance) * data publishing utils builtin * IO/data format agnostic * immutable metadata * development mode ## Artifact flavours Currently available Artifact flavours: * `FSArtifact`: metadata/utils for files or objects (supports: local FS, GCS, S3 and more) * `BQArtifact`: metadata/utils for BigQuery tables * `NotebookArtifact`: metadata/utils for Jupyter Notebooks ## Development mode To ease development of Artifacts, *articat* supports development/dev mode. Development Artifact can be indicated by `dev` parameter (preferred), or `_dev` prefix in the Artifact `id`. Dev mode supports: * overwriting Artifact metadata * configure separate locations (e.g. `dev_prefix` for `FSArtifact`), with potentially different retention periods etc ## Backend * `local`: mostly for testing/demo, metadata is stored locally (configurable, default: `~/.config/articat/local`) * `gcp_datastore`: metadata is stored in the Google Cloud Datastore ## Configuration *articat* configuration can be provided in the API, or configuration files. By default configuration is loaded from `~/.config/articat/articat.cfg` and `articat.cfg` in current working directory. You can also point at the configuration file via environment variable `ARTICAT_CONFIG`. You use `local` mode without configuration file. Available options: ```toml [main] # local or gcp_datastore, default: local # mode = # local DB directory, default: ~/.config/articat/local # local_db_dir = [fs] # temporary directory/prefix # tmp_prefix = # development data directory/prefix # dev_prefix = # production data directory/prefix # prod_prefix = [gcp] # GCP project # project = [bq] # development data BigQuery dataset # dev_dataset = # production data BigQuery dataset # prod_dataset = ``` ## Our/example setup Below you can see a diagram of our setup, Articat is just one piece of our system, and solves a specific problem. This should give you an idea where it might fit into your environment: <p align="center"> <img src="https://docs.google.com/drawings/d/1wll4Q_PlKGHVu-C2IN8jUIxzFTD8jwFWnvwgFrvq2ls/export/png" alt="Our setup diagram"/> </p>


نیازمندی

مقدار نام
>=0.4.0 fire
>=2021.7.0 fsspec
>=2021.7.0 gcsfs
>=1.11 google-cloud-bigquery
>=2.1 google-cloud-datastore
>=2.3 papermill
~=1.8 pydantic


زبان مورد نیاز

مقدار نام
>=3.10 Python


نحوه نصب


نصب پکیج whl articat-0.1.9:

    pip install articat-0.1.9.whl


نصب پکیج tar.gz articat-0.1.9:

    pip install articat-0.1.9.tar.gz