معرفی شرکت ها


arrex-0.5.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

typed arrays using any custom type as element type
ویژگی مقدار
سیستم عامل -
نام فایل arrex-0.5.1
نام arrex
نسخه کتابخانه 0.5.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jimy Byerley
ایمیل نویسنده jimy.byerley@gmail.com
آدرس صفحه اصلی https://github.com/jimy-byerley/arrex
آدرس اینترنتی https://pypi.org/project/arrex/
مجوز GNU LGPL v3
Arrex ----- - [documentation](https://arrex.readthedocs.io/) - [repository](https://github.com/jimy-byerley/pymadcad) [![support-version](https://img.shields.io/pypi/pyversions/arrex.svg)](https://img.shields.io/pypi/pyversions/arrex) [![PyPI version shields.io](https://img.shields.io/pypi/v/arrex.svg)](https://pypi.org/project/arrex/) [![Documentation Status](https://readthedocs.org/projects/arrex/badge/?version=latest)](https://arrex.readthedocs.io/en/latest/?badge=latest) Arrex is a module that allows to create typed arrays much like `numpy.ndarray` and `array.array`, but resizeable and using any kind of element, not only numbers. Its dtype system is extremely flexible and makes it ideal to work and share structured data with compiled code. The elements can be many different things, there is just 2 requirements: - they must be of a fixed binary size - they must be byte copiable, therefore without any reference or pointer to something else ### interests - much smaller memory footprint (an arrex array is at most 30x smaller than pure python data storage) - content can be directly shared with compiled code which improves computation performances - slice & view without a copy - compatible with standard python libraries ### basic usage: ```python >>> from arrex import * >>> a = typedlist([ myclass(...), myclass(...), ], dtype=myclass) >>> a[0] myclass(...) ``` in that example, `myclass` can be a primitive numpy type, like `np.float64` ```python >>> import arrex.numpy # this is enabling numpy dtypes for arrex >>> typedlist(dtype=np.float64) ``` it can be a more complex type, from module `pyglm` for instance ```python >>> import arrex.glm # this is enabling glm dtypes for arrex >>> typedlist(dtype=glm.vec4) ``` `typedlist` is a dynamically sized, borrowing array, which mean the internal buffer of data is reallocated on append, but can be used to view and extract from any buffer without a copy. ### Use it as a list: ```python >>> a = typedlist(dtype=vec3) # build from an iterable >>> a = typedlist([], dtype=vec3) # append some data >>> a.append(vec3(1,2,3)) # extend with an iterable >>> a.extend(vec3(i) for i in range(5)) >>> len(a) # the current number of elements 6 >>> a.owner # the current data buffer b'.........' >>> a[0] vec3(1,2,3) ``` ### Use it as a slice: ```python >>> myslice = a[:5] # no data is copied typedlist(....) ``` ### Use it as a view on top of a random buffer ```python >>> a = np.ones((6,3), dtype='f4') >>> myslice = typedlist(a, dtype=vec3) ``` ### buffer protocol It does support the buffer protocol, so it can be converted into a great variety of well known arrays, even without any copy ```python >>> np.array(typedlist([....])) ``` ### Which dtype is allowed answer is: *whatever you want*, but here is some examples: ```python # an extension type, previously declared typedlist(dtype=glm.vec3) # a Struct typedlist(dtype='ffxI') # a ctype typedlist(dtype=ctypes.c_int*5) # a pure python class class test_class: __packlayout__ = 'ff' _struct = struct.Struct(__packlayout__) def __init__(self, x, y): self.x = x self.y = y def __bytes__(self): return self._struct.pack(self.x, self.y) @classmethod def frombytes(cls, b): return cls(*cls._struct.unpack(b)) typedlist(dtype=test_class) # and so much more ! ``` ## performances Time performances comparison between `list`, `numpy.ndarray`, and `arrex.typedlist` (see [benchmark](benchmark_typedlist.py) ) execution time (s) for 10k elements (dvec3) set item list: 7.9847e-04 s numpy: 1.2727e-02 s arrex: 1.0481e-03 s (10x faster than numpy) get item creation: 1.0655e-03 s list: 5.1503e-04 s numpy: 1.8619e-03 s arrex: 8.0111e-04 s (2x faster than numpy) ​ ## Roadmap There is additionnal features planned, but no precise schedul yet: - typedarray a n-dim array view much like numpy arrays but using dtypes as in `typedlist`. Its purpose is mostly to access its items with n-dim indices and slices. - a ufunc system to collect and put defaults to any kind of array scale operations, like `__add__`, `__mul__`, `__matmul__`, ... The goal would be to have a standard way to apply any function to every element of one or more array, that defaults to the python implementation, but can be overloaded with a compiled implementation - maybe even extend to the complete API of [numcy](https://github.com/jimy-byerley/numcy/blob/master/proposal.md)


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl arrex-0.5.1:

    pip install arrex-0.5.1.whl


نصب پکیج tar.gz arrex-0.5.1:

    pip install arrex-0.5.1.tar.gz