معرفی شرکت ها


arip-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ARIP, software to quantify bacterial resistance to antibiotics by analysing picture of phenotypic plates
ویژگی مقدار
سیستم عامل -
نام فایل arip-1.0.2
نام arip
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده oriol mazariegos
ایمیل نویسنده mazeitor@gmail.com
آدرس صفحه اصلی https://github.com/mazeitor/antibiotic-resistance-image-process
آدرس اینترنتی https://pypi.org/project/arip/
مجوز GPLv3
Antibiotic Resistance Image Process - ARIP ========================================== This software is aimed to quantify bacterial resistance to antibiotics by analysing pictures of phenotypic plates. Currently it supports 96 well plates where different bacteria are cultured with different concentrations of antibiotics, but the application adapt to different plates size in rows and columns. Computer vision algorithms have been implemented in order to detect different levels of bacterial growth. As a result, the software generates a report providing quantitative information for each well of the plate. Pictures should be taken so that the plate is square with the picture frame, the algorithm should be able to cope with a slight rotation of the plate. Key methods: ------------ - Hough Circles method to detect circles in an image `doc <http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html>`__ - Wells segmentation using threshold feature of opencv `doc <http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#threshold>`__ combining binary and otsu threshold - Quality detection using a grid model by rows and columns and clustering them, robust to scale and sensible rotation. Execution: ---------- There are two ways for executing the process: binary or library \* Binary using arip.py file allocated in the project: .. code:: bash python arip.py --image images/\<platename\>.png - Library installing as described below: .. code:: bash import arip arip.process({'image': 'images/sinteticplate.jpg'}) input: ~~~~~~ images/<platename>.png with a plate and ninety six wells output: ~~~~~~~ - Image with extracted wells: images/<platename>/outputXXX.png - Cropped image of extracted well: images/<platename>/<row>\ *<column>*\ <resistance>\_<density>.png - Report in json format: images/<platename>/report.json - Log: images/<platename>/log.txt description of schema: \* row: well row index \* column: well colmun index \* total: well area in pixels \* resistance: absolute resistance found in pixels \* density: density of the resistance found report example: :: "7-J":{ "density":0.17, "column":"A", "resistance":122, "total":706, "row":"4" } output images example: :: 4-A_122-0.23, is the well 4-A, with 122 pixels found as resistance with density of 17% output log example: :: customizing scale well: found False, num wells 93, min radius value 18, max radius value 23 customizing scale well: found False, num wells 96, min radius value 18, max radius value 24 customizing grid matching: found False, num wells recognized 96 Succesfully processed plate, found 96 wells Installing dependencies ----------------------- pip ~~~ sudo apt-get install python-pip ### opencv sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev sudo apt-get install python-opencv ### scilab sudo apt-get install python-scipy Installing arip --------------- There are two ways of installing pynteractive: \* Cloning the project .. code:: bash $ git clone https://github.com/mazeitor/antibiotic-resistance-process.git $ cd antibiotic-resistance-process $ python setup.py install ### (as root) - Via `Python package index <https://pypi.python.org/pypi/pip>`__ (pip), TODO .. code:: bash $ pip install arip TODO ---- - Normalizing radius by neighborhood instead of general average - Working with static grids or masks


نحوه نصب


نصب پکیج whl arip-1.0.2:

    pip install arip-1.0.2.whl


نصب پکیج tar.gz arip-1.0.2:

    pip install arip-1.0.2.tar.gz