معرفی شرکت ها


argueview-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ArgueView is a tool for generating text-based presentations for machine-learning predictions and feature-importance based explanation tools. The tool makes use of Toulmin's model of argumentation for structuring the text-based explanations.
ویژگی مقدار
سیستم عامل -
نام فایل argueview-0.2.1
نام argueview
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sophia Hadash
ایمیل نویسنده s.hadash@tue.nl
آدرس صفحه اصلی https://github.com/SophiaHadash/ArgueView
آدرس اینترنتی https://pypi.org/project/argueview/
مجوز -
<p align="center"> <img href="https://github.com/SophiaHadash/ArgueView" alt="ArgueView" src="https://raw.githubusercontent.com/SophiaHadash/ArgueView/master/screenshots/logo.svg" width="50%" /> <p> --- [![Build Status](https://jenkins.tuneblendr.com/job/ArgueView/job/master/badge/icon?style=flat&link=https%3A%2F%2Fjenkins.tuneblendr.com%2Fblue%2Forganizations%2Fjenkins%2FTuneblendr%2Factivity "Build Status")](https://jenkins.tuneblendr.com/blue/organizations/jenkins/ArgueView/activity) ArgueView is a tool for generating text-based presentations for machine-learning predictions and feature-importance based explanation tools. The tool makes use of Toulmin's model of argumentation for structuring the text-based explanations. Example output using the visualizer: ![Example Visualization](https://github.com/sophiahadash/argueview/blob/master/screenshots/toulmin-visualizer.png?raw=true) ![Example output](https://github.com/sophiahadash/argueview/blob/master/screenshots/featurelist-visualizer.png?raw=true) The procedure for creating ArgueView explanations is as follows: 1. A traditional machine-learning context is created (i.e. data, model) 2. An explainer is employed to produce *feature importance*. This can be a white-box or black-box explainer. An example of a black-box explainer is [LIME](https://github.com/marcotcr/lime). 3. The machine-learning context and the *feature importance* are given to ArgueView such that it can produce a textual explanation. ![Procedure visualization](https://github.com/sophiahadash/argueview/blob/master/screenshots/model.png?raw=true) ## Installation ArgueView is available as a python package on [PyPi](https://pypi.org/project/argueview/). You can install it using `pip`: ``` pip install argueview ``` Or, using `pipenv`: ``` pipenv install argueview ``` ## Usage Usage is documented in our examples. Examples are available in python and jupyter notebooks. The following examples are available: - minimal, hypothetical data and explainer: [python](https://github.com/SophiaHadash/ArgueView/blob/master/examples/fruit_plain/example.py) - creditg data with [LIME](https://github.com/marcotcr/lime) explainer: [python](https://github.com/SophiaHadash/ArgueView/blob/master/examples/creditg_lime/example.py), [notebook](https://github.com/SophiaHadash/ArgueView/blob/master/examples/creditg_lime/example.ipynb) - creditg data with [shap](https://github.com/slundberg/shap) explainer: [python](https://github.com/SophiaHadash/ArgueView/blob/master/examples/creditg_shap/example.py), [notebook](https://github.com/SophiaHadash/ArgueView/blob/master/examples/creditg_shap/example.ipynb) ## Running the examples There are two examples available to help you learn how to use ArgueView. The 'plain' examples uses hypothetical data to show a minimalistic use-case. The CreditG example uses real data and a real ML model to illustrate a real-world use case. If you would like to run the CreditG example the script needs to obtain the data. For this we use [OpenML](https://www.openml.org/). However, usage requires a valid API key and you will need to obtain one to run the example. After you have obtained your key, create a `.env` file with your [OpenML](https://www.openml.org/) API key. ``` echo "OML_APIKEY={my-key}" > .env ``` *Note: You can skip this step if you want to run the hypothetical example.* Install all dependencies: ``` pipenv install --dev ``` Run an example: ``` /path/to/python3 ./examples/{example}/example.py ``` Additionally, there is are Jupyther Notebooks available to directly see how ArgueView works. ## Building Follow these steps to build ArgueView from source. - make sure you install the dependencies. ArgueView requires the following dependencies: `python>=3.5`, `pip3`, `pipenv`, `git`. - build using make ``` make ``` ### Using Docker Alternatively you can build ArgueView using docker. - build context dockerfile ``` docker build -t argueview/context:local . ``` - run `build.sh` in a container ``` CID=$(docker run -v /var/run/docker.sock:/var/run/docker.sock argueview/context build.sh) ``` - copy results from the container ``` docker cp ${CID}:/argueview/argueview.egg-info ./argueview.egg-info docker cp ${CID}:/argueview/build ./build docker cp ${CID}:/argueview/dist ./dist ```


نیازمندی

مقدار نام
==0.0.2.0 anchor-exp
==0.2.0 backcall
==2020.12.5 certifi
==3.0.4 chardet
==0.10.0 cycler
==2.0.5 cymem
==4.4.2 decorator
==2.9.0 imageio
==0.2.0 ipython-genutils
==7.19.0 ipython
==1.4.1 jsonpickle
==1.0.5 murmurhash
==1.19.4 numpy
==0.7.5 pickleshare
==1.1.3 plac
==3.0.5 preshed
==0.6.0 ptyprocess
==1.5.4 scipy
==1.0.5 srsly
==7.4.3 thinc
==0.8.0 wasabi
==0.2.5 wcwidth
==3.0.8 prompt-toolkit
==2.4.7 pyparsing
==1.0.0 catalogue
==2.10 idna
==0.7.1 parso
==2.8.1 python-dateutil
==1.15.0 six
==4.54.1 tqdm
==0.17.2 jedi
==2.25.0 requests
==2.3.4 spacy
==1.26.2 urllib3
==0.2.0.1 lime
==2.7.3 pygments
==1.1.1 pywavelets
==2.1.0 threadpoolctl
==0.7.4 blis
==3.1.1 importlib-metadata
==0.17.0 joblib
==1.3.1 kiwisolver
==3.3.3 matplotlib
==2.5 networkx
==8.0.1 pillow
==0.17.2 scikit-image
==0.23.2 scikit-learn
==3.4.0 zipp
==2020.12.4 tifffile
==5.0.5 traitlets
==4.8.0 pexpect


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl argueview-0.2.1:

    pip install argueview-0.2.1.whl


نصب پکیج tar.gz argueview-0.2.1:

    pip install argueview-0.2.1.tar.gz