معرفی شرکت ها


araviq6-2.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package for converting QVideoFrame to NDArray with Qt6
ویژگی مقدار
سیستم عامل -
نام فایل araviq6-2.1.1
نام araviq6
نسخه کتابخانه 2.1.1
نگهدارنده ['Jisoo Song']
ایمیل نگهدارنده ['jeesoo9595@snu.ac.kr']
نویسنده Jisoo Song
ایمیل نویسنده jeesoo9595@snu.ac.kr
آدرس صفحه اصلی https://github.com/JSS95/araviq6
آدرس اینترنتی https://pypi.org/project/araviq6/
مجوز MIT
# AraViQ6 - NDArray-based Video processing with Qt6 [![PyPI version](https://badge.fury.io/py/AraViQ6.svg)](https://badge.fury.io/py/AraViQ6) [![Python Version](https://img.shields.io/pypi/pyversions/araviq6)](https://pypi.org/project/araviq6/) [![Build Status](https://github.com/JSS95/araviq6/actions/workflows/ci.yml/badge.svg)](https://github.com/JSS95/araviq6/actions/workflows/ci.yml) [![Documentation Status](https://readthedocs.org/projects/araviq6/badge/?version=latest)](https://araviq6.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/github/license/JSS95/araviq6)](https://github.com/JSS95/araviq6/blob/master/LICENSE) AraViQ6 is a Python package which integrates NDArray-based image processing with video pipeline of Qt6. It provides: - QVideoFrame processor based on array processing - Converters between NDArray and QVideoFrame - Convenience classes and widgets for array displaying The following Qt bindings are supported: - [PySide6](https://pypi.org/project/PySide6/) - [PyQt6](https://pypi.org/project/PyQt6/) # How to use There are two ways to use AraViQ6; using QVideoFrame-based pipeline, or using NDArray-based pipeline. ## Frame-based pipeline Frame-based pipeline is a high-level approach that works well with Qt Multimedia scheme. <div align="center"> <img src="https://github.com/JSS95/araviq6/raw/master/doc/source/_images/frame-pipeline.jpg"/><br> QVideoFrame pipeline with AraViQ6 </div> Frame-based pipeline consists of: 1. `VideoFrameWorker` 2. `VideoFrameProcessor` QVideoFrame comes from and goes to Qt6's `QVideoSink`. AraViQ6's `VideoFrameWorker` converts QVideoFrame to numpy array, performs processing, and sends the results to downstream in both QVideoFrame and NDArray. User may subclass the worker to define own processing. `VideoFrameProcessor` wraps the worker and provides API around it. Worker is mulithreaded in the processor. ## Array-based pipeline Array-based pipeline is a low-level approach. It can be useful when third-party package provides video frame in numpy array format. <div align="center"> <img src="https://github.com/JSS95/araviq6/raw/master/doc/source/_images/array-pipeline.jpg"/><br> NDArray pipeline with AraViQ6 </div> Array-based pipeline consists of: 1. `FrameToArrayConverter` 2. `ArrayWorker` 3. `ArrayProcessor` 4. `ArrayToFrameConverter` `FrameToArrayConverter` and `ArrayToFrameConverter` performs conversion between frame pipeline and array pipeline. To retain the metadata (e.g., timestamp) of QVideoFrame, these classes includes the original frame for the array. `ArrayWorker` performs processing on incoming array and sends the result to downstream in NDArray. User may subclass the worker to define own processing. `ArrayProcessor` wraps the worker and provides API around it. Worker is mulithreaded in the processor. ## Convenicence classes AraViQ6 also provides various convenience classes to make building the pipeline easier. The following classes help setting array pipeline with the video source and the display. - `NDArrayVideoPlayer` - `NDArrayMediaCaptureSession` - `NDArrayLabel` The following classes are plug-and-play widgets where user can process the video with minimal boilerplate. - `PlayerProcessWidget` - `CameraProcessWidget` # Examples Use cases are provided in [examples](https://github.com/JSS95/araviq6/tree/master/doc/source/examples) directory. They can be found in documentation as well. # Installation Before you install, be careful for other Qt-dependent packages installed in your environment. For example, non-headless OpenCV-Python modifies the Qt dependency thus can make other Qt bindings unavailable. `araviq6` can be installed using `pip`. ``` $ pip install araviq6 ``` # Documentation AraViQ6 is documented with [Sphinx](https://pypi.org/project/Sphinx/). Documentation can be found on Read the Docs: > https://araviq6.readthedocs.io/ If you want to build the document yourself, clone the source code and install with `[doc]` option. Go to `doc` directory and build the document. ``` $ pip install araviq6[doc] $ cd doc $ make html ``` Document will be generated in `build/html` directory. Open `index.html` to see the central page.


نیازمندی

مقدار نام
- numpy
>=1.10 qimage2ndarray
- numpydoc
- sphinx
- sphinx-tabs
- sphinx-rtd-theme
- typing-extensions
- numpydoc
- mypy
- sphinx-tabs
- flake8
- sphinx
- sphinx-rtd-theme
- pytest-xvfb
- pytest
- black
- pytest-qt
- opencv-python-headless
- typing-extensions
- black
- flake8
- mypy
- opencv-python-headless
- pytest
- pytest-qt
- black
- flake8
- mypy
- opencv-python-headless
- pytest
- pytest-qt
- pytest-xvfb


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl araviq6-2.1.1:

    pip install araviq6-2.1.1.whl


نصب پکیج tar.gz araviq6-2.1.1:

    pip install araviq6-2.1.1.tar.gz