معرفی شرکت ها


appscanner-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

AppScanner: Automatic Fingerprinting of Smartphone Apps from Encrypted Network Traffic
ویژگی مقدار
سیستم عامل -
نام فایل appscanner-1.0.2
نام appscanner
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Thijs van Ede
ایمیل نویسنده t.s.vanede@utwente.nl
آدرس صفحه اصلی https://github.com/Thijsvanede/AppScanner
آدرس اینترنتی https://pypi.org/project/appscanner/
مجوز -
# AppScanner This code was implemented as part of the NDSS FlowPrint [1] paper, it implements the Single Large Random Forest Classifier of AppScanner [2]. We ask people to cite both works when using the software for academic research papers. ## Installation ### Using pip The easiest way to install `appscanner` is using pip ``` pip install appscanner ``` ### Manually If you would like to install appscanner manually, please make sure you have installed the required dependencies. #### Dependencies This code is written in Python3 and depends on the following libraries: * Numpy * Pandas * Scikit-learn * Scapy To install these use the following command ``` pip install -U scapy numpy pandas scikit-learn ``` ## Usage The AppScanner implementation can be tested with the `main.py` script. This script allows you to specify .pcap files to load. After loading, the script splits the data into training and testing data and evaluates the performance. See `main.py --help` for more information. ### API It is also possible to directly use the AppScanner code as an API. There are two main classes which need to be understood. * `appscanner.preprocessor.Preprocessor` for extracting features from `.pcap` files. * `appscanner.appscanner.AppScanner` for applying the AppScanner detection. #### Preprocessor The `Preprocessor` object is used to extract data from `.pcap` files and label them. To this end, it uses the `process` function which requires a list of files and a list of labels. The list of files must be pathnames to pcap files. The list of labels must be labels corresponding to each file. The example below shows how the `Preprocessor` can be used. ##### Example ```python from appscanner.preprocessor import Preprocessor # Create object preprocessor = Preprocessor() # Load from files X, y = preprocessor.process(['<path_file_1>', ..., '<path_file_n>'], ['<label_1>' , ..., '<label_n>']) ``` #### AppScanner The `AppScanner` object is used to find known applications in network traffic. AppScanner requires a confidence `threshold` (default=0.9). The threshold means AppScanner only returns labels for which it is confident enough or `-1` otherwise, a threshold of 0 gives labels for every predicted sample. It can be `fit` with `X_train` and `y_train` arrays obtained by the `Preprocessor`. After it has been `fit`, the `AppScanner` is able to `predict` unknown samples `X_test`. The example below shows how `AppScanner` can be used. ##### Example ```python from appscanner.appscanner import AppScanner # Create object scanner = AppScanner(threshold=0.9) # Fit scanner scanner.fit(X_train, y_train) # Predict labels of test data y_pred = scanner.predict(X_test) ``` ## References [1] `van Ede, T., Bortolameotti, R., Continella, A., Ren, J., Dubois, D. J., Lindorfer, M., Choffnes, D., van Steen, M. & Peter, A. (2020, February). FlowPrint: Semi-Supervised Mobile-App Fingerprinting on Encrypted Network Traffic. In 2020 NDSS. The Internet Society.` [2] `Taylor, V. F., Spolaor, R., Conti, M., & Martinovic, I. (2016, March). Appscanner: Automatic fingerprinting of smartphone apps from encrypted network traffic. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 439-454). IEEE.` ### Bibtex ``` @inproceedings{vanede2020flowprint, title={{FlowPrint: Semi-Supervised Mobile-App Fingerprinting on Encrypted Network Traffic}}, author={van Ede, Thijs and Bortolameotti, Riccardo and Continella, Andrea and Ren, Jingjing and Dubois, Daniel J. and Lindorfer, Martina and Choffness, David and van Steen, Maarten, and Peter, Andreas} booktitle={NDSS}, year={2020}, organization={The Internet Society} } ``` ``` @inproceedings{taylor2016appscanner, title={Appscanner: Automatic fingerprinting of smartphone apps from encrypted network traffic}, author={Taylor, Vincent F and Spolaor, Riccardo and Conti, Mauro and Martinovic, Ivan}, booktitle={2016 IEEE European Symposium on Security and Privacy (EuroS\&P)}, pages={439--454}, year={2016}, organization={IEEE} } ```


نحوه نصب


نصب پکیج whl appscanner-1.0.2:

    pip install appscanner-1.0.2.whl


نصب پکیج tar.gz appscanner-1.0.2:

    pip install appscanner-1.0.2.tar.gz