معرفی شرکت ها


approxbayescomp-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Approximate Bayesian Computation for actuaries
ویژگی مقدار
سیستم عامل -
نام فایل approxbayescomp-0.1.0
نام approxbayescomp
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Patrick Laub and Pierre-Olivier Goffard
ایمیل نویسنده patrick.laub@gmail.com
آدرس صفحه اصلی https://github.com/Pat-Laub/approxbayescomp
آدرس اینترنتی https://pypi.org/project/approxbayescomp/
مجوز MIT
# The Python package 'approxbayescomp' for Approximate Bayesian Computation To install simply run `pip install approxbayescomp`. This package is the result of our paper "[Approximate Bayesian Computation to fit and compare insurance loss models](https://arxiv.org/abs/2007.03833)". It implements an efficient ABC algorithm -- the sequential Monte Carlo (SMC) algorithm -- and is targeted towards insurance problems (specifically, fitting loss distributions), though it is easily adapted to other situations. For example, imagine we have an i.i.d. sample of random sums of lognormal variables where the number of summands is Poisson distributed. The fit this data we would run: ```python import approxbayescomp as abc # Load data to fit obsData = ... # Frequency-Loss Model freq = "poisson" sev = "lognormal" psi = abc.Psi("sum") # Aggregation process # Fit the model to the data using ABC prior = abc.IndependentUniformPrior([(0, 100), (-5, 5), (0, 3)]) model = abc.Model(freq, sev, psi, prior) fit = abc.smc(numIters, popSize, obsData, model) ``` For a description of the aims and methodology of ABC check out our paper, it is written with ABC newcomers in mind. For examples of this package in use, check out the Jupyter notebooks in our [online supplement repository](https://github.com/LaGauffre/ABCFitLoMo) for the paper. The main design goal for this package was computational speed. ABC is notoriously computationally demanding, so we spent a long time optimising the code as much as possible. The key functions are JIT-compiled to C with `numba` (we experimented with JIT-compiling the entire SMC algorithm, but `numba`'s random variable generation is surprisingly slower than `numpy`'s implementation). Everything that can be `numpy`-vectorised has been. And we scale to use as many CPU cores available on a machine using `joblib`. We also aimed to have total reproducibility, so for any given seed value the resulting ABC posterior samples will always be identical. Our main dependencies are joblib, numba, numpy, and scipy. The package also uses psutil, matplotlib, fastprogress, and hilbertcurve, though in most cases these can be commented out if it were necessary. Patrick has a rough start at a C++ version of this package at the [cppabc](https://github.com/Pat-Laub/cppabc) repository. It only handles the specific Geometric-Exponential random sums case, though if you are interested in collaborating to expand this, let him know!


نیازمندی

مقدار نام
- joblib
- numba
>=1.17 numpy
>=1.4 scipy
- psutil
- matplotlib
- fastprogress
>=2.0 hilbertcurve


نحوه نصب


نصب پکیج whl approxbayescomp-0.1.0:

    pip install approxbayescomp-0.1.0.whl


نصب پکیج tar.gz approxbayescomp-0.1.0:

    pip install approxbayescomp-0.1.0.tar.gz