معرفی شرکت ها


applyaf-1.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Apply antenna factor and cable loss tospectrum analyzer measurements
ویژگی مقدار
سیستم عامل -
نام فایل applyaf-1.3.1
نام applyaf
نسخه کتابخانه 1.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matthew Rankin
ایمیل نویسنده matthew@questrail.com
آدرس صفحه اصلی http://github.com/questrail/applyaf
آدرس اینترنتی https://pypi.org/project/applyaf/
مجوز MIT
# applyaf [![PyPi Version][pypi ver image]][pypi ver link] [![Build Status][travis image]][travis link] [![Coverage Status][coveralls image]][coveralls link] [![License Badge][license image]][LICENSE.txt] [applyaf][] is a Python 3.4+ module that applies frequency dependent antenna factors and cable losses to spectrum analyzer readings in order to calculate the incident field. Any duplicate frequency entries in the antenna factors or cable losses data are removed before interpolating the frequencies to match those of the spectrum analyzer readings. ## Inputs Three csv files containing the following are required inputs: 1. Spectrum analyzer measurements 2. Antenna factor data 3. Cable loss data Each CSV file should contain data in two columns: 1. Frequency 2. Amplitude The amplitude is expected to be in dB. ## Requirements - [numpy][] - `csv` module from the [Python Standard Library][] - `os` module from the [Python Standard Library][] ## Future Improvements Some thoughts for future improvements include: 1. Allowing CSV data files that contain non-dB amplitudes and then convert as needed. Should this be a per-file setting? 2. Generalize the code to handle a variable number (>3) of data to be interpolated and applied to the given data set. 3. If the code is generalized, should this be wrapped into the [siganalysis][] project or left on its own? ## Contributing Use the following commands to create a Python 3.9.9 virtualenv using [pyenv][] and [pyenv-virtualenv][], install the requirements in the virtualenv named `applyaf`, and list the available [Invoke][] tasks. ```bash $ pyenv virtualenv 3.9.9 applyaf $ pyenv activate applyaf $ pip install -r requirements.txt $ inv -l ``` ### Submitting Pull Requests [applyaf][] is developed using [Scott Chacon][]'s [GitHub Flow][]. To contribute, fork [applyaf][], create a feature branch, and then submit a pull request. [GitHub Flow][] is summarized as: - Anything in the `master` branch is deployable - To work on something new, create a descriptively named branch off of `master` (e.g., `new-oauth2-scopes`) - Commit to that branch locally and regularly push your work to the same named branch on the server - When you need feedback or help, or you think the brnach is ready for merging, open a [pull request][]. - After someone else has reviewed and signed off on the feature, you can merge it into master. - Once it is merged and pushed to `master`, you can and *should* deploy immediately. # License [applyaf][] is released under the MIT license. Please see the [LICENSE.txt][] file for more information. [applyaf]: https://github.com/questrail/applyaf [coveralls image]: http://img.shields.io/coveralls/questrail/applyaf/master.svg [coveralls link]: https://coveralls.io/r/questrail/applyaf [github flow]: http://scottchacon.com/2011/08/31/github-flow.html [invoke]: https://www.pyinvoke.org/ [LICENSE.txt]: https://github.com/questrail/applyaf/blob/develop/LICENSE.txt [license image]: http://img.shields.io/pypi/l/applyaf.svg [numpy]: http://www.numpy.org [pull request]: https://help.github.com/articles/using-pull-requests [pyenv]: https://github.com/pyenv/pyenv [pyenv-virtualenv]: https://github.com/pyenv/pyenv-virtualenv [pypi ver image]: http://img.shields.io/pypi/v/applyaf.svg [pypi ver link]: https://pypi.python.org/pypi/applyaf [python standard library]: https://docs.python.org/2/library/ [scott chacon]: http://scottchacon.com/about.html [siganalysis]: https://github.com/questrail/siganalysis [travis image]: http://img.shields.io/travis/questrail/applyaf/master.svg [travis link]: https://travis-ci.org/questrail/applyaf


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl applyaf-1.3.1:

    pip install applyaf-1.3.1.whl


نصب پکیج tar.gz applyaf-1.3.1:

    pip install applyaf-1.3.1.tar.gz