معرفی شرکت ها


applipy-metrics-1.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Performance metrics, based on Coda Hale's Yammer metrics
ویژگی مقدار
سیستم عامل -
نام فایل applipy-metrics-1.2.3
نام applipy-metrics
نسخه کتابخانه 1.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alessio Linares
ایمیل نویسنده mail@alessio.cc
آدرس صفحه اصلی https://gitlab.com/applipy/applipy_metrics
آدرس اینترنتی https://pypi.org/project/applipy-metrics/
مجوز Apache 2.0
[![pipeline status](https://gitlab.com/applipy/applipy_metrics/badges/master/pipeline.svg)](https://gitlab.com/applipy/applipy_metrics/-/pipelines?scope=branches&ref=master) [![coverage report](https://gitlab.com/applipy/applipy_metrics/badges/master/coverage.svg)](https://gitlab.com/applipy/applipy_metrics/-/graphs/master/charts) [![PyPI Status](https://img.shields.io/pypi/status/applipy-metrics.svg)](https://pypi.org/project/applipy-metrics/) [![PyPI Version](https://img.shields.io/pypi/v/applipy-metrics.svg)](https://pypi.org/project/applipy-metrics/) [![PyPI Python](https://img.shields.io/pypi/pyversions/applipy-metrics.svg)](https://pypi.org/project/applipy-metrics/) [![PyPI License](https://img.shields.io/pypi/l/applipy-metrics.svg)](https://pypi.org/project/applipy-metrics/) [![PyPI Format](https://img.shields.io/pypi/format/applipy-metrics.svg)](https://pypi.org/project/applipy-metrics/) # Applipy Metrics > Note: This is a hard fork of > [Lightricks/PyFormance](https://github.com/Lightricks/pyformance) at commit > [`d59501e`](https://github.com/Lightricks/pyformance/commit/d59501ec06299b6af3b758f0ba9ce3f57bf6c73d) A Python port of the core portion of a [Java Metrics library by Coda Hale](http://metrics.dropwizard.io/), with inspiration by [YUNOMI - Y U NO MEASURE IT?](https://github.com/richzeng/yunomi) Applipy Metrics is a toolset for performance measurement and statistics, with a signaling mechanism that allows to issue events in cases of unexpected behavior ## Core Features ### Gauge A gauge metric is an instantaneous reading of a particular value. ### Counter Simple interface to increment and decrement a value. For example, this can be used to measure the total number of jobs sent to the queue, as well as the pending (not yet complete) number of jobs in the queue. Simply increment the counter when an operation starts and decrement it when it completes. ### Summary Measures the statistical distribution of values in a data stream. Keeps track of minimum, maximum, mean, standard deviation, etc. It also measures median, 75th, 90th, 95th, 98th, 99th, and 99.9th percentiles. An example use case would be for looking at the number of daily logins for 99 percent of your days, ignoring outliers. ### Regex Grouping Useful when working with APIs. A RegexRegistry allows to group API calls and measure from a single location instead of having to define different timers in different places. >>> from applipy_metrics.registry import RegexRegistry >>> reg = RegexRegistry(pattern='^/api/(?P<model>)/\d+/(?P<verb>)?$') >>> def rest_api_request(path): ... with reg.timer(path).time(): ... # do stuff >>> print(reg.dump_metrics()) ### applipy This library exposes an applipy module, if applipy is installed. The module can be imported at `applipy_metrics.MetricsModule`. It binds a `MetricsRegistry` instance, so that other modules can declare a dependency and use it to create metrics. #### Configurations available * `metrics.clock`: fully qualified name of an object with a member function named `time()` that returns unix timestamps. Will be used as the registry clock, used for summaries. * `metrics.summary.sample_provider`: fully qualified name of a function that accepts a _clock_ instance and returns an instance of either `applipy_metrics.stats.samples.ExpDecayingSample`, `applipy_metrics.stats.samples.SlidingTimeWindowSample` or `None`. #### Metrics Reporters If you want to report your metrics using a `applipy_metrics.reporters.reporter.Reporter` instance, simply bind your reporter provider/instance to the base reporter type. The MetricsModule will take care of its lifecycle. ## Examples ### Decorators The simplest and easiest way to use the Applipy Metrics library. ##### Counter You can use the `count_calls` decorator to count the number of times a function is called. >>> from applipy_metrics import counter, count_calls >>> @count_calls ... def test(): ... pass ... >>> for i in range(10): ... test() ... >>> print(counter("test_calls").get_count()) 10 ##### Timer You can use the `time_calls` decorator to time the execution of a function and get distribution data from it. >>> import time >>> from applipy_metrics import summary, time_calls >>> @time_calls ... def test(): ... time.sleep(0.1) ... >>> for i in range(10): ... test() ... >>> print(summary("test_calls").get_snapshot().get_mean()) 0.100820207596 ### With statement You can also use a timer using the with statement ##### Chronometer >>> import time >>> from applipy_metrics import summary, Chronometer >>> with Chronometer(on_stop=lambda x: summary("test").add(x)): ... time.sleep(0.1) >>> print(summary("test").get_snapshot().get_mean()) 0.10114598274230957


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl applipy-metrics-1.2.3:

    pip install applipy-metrics-1.2.3.whl


نصب پکیج tar.gz applipy-metrics-1.2.3:

    pip install applipy-metrics-1.2.3.tar.gz