معرفی شرکت ها


apple-peeler-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extract XML from the OS X dictionaries.
ویژگی مقدار
سیستم عامل -
نام فایل apple-peeler-0.1.1
نام apple-peeler
نسخه کتابخانه 0.1.1
نگهدارنده ['Joshua Olson']
ایمیل نگهدارنده ['joshua+github@solarmist.net']
نویسنده Joshua Olson
ایمیل نویسنده joshua+github@solarmist.net
آدرس صفحه اصلی https://github.com/solarmist/apple-peeler
آدرس اینترنتی https://pypi.org/project/apple-peeler/
مجوز MIT
# Before You Start Apple-peeler was written using python 3.9 (but it should be trivial to support earlier versions of python 3.5+). # Installation pip install apple-peeler # Dependencies [BeautifulSoup 4](https://beautiful-soup-4.readthedocs.io/en/latest/), [lxml](https://lxml.de), and [click](https://click.palletsprojects.com/en/8.0.x/) # Usage Apple likes to move around the dictionaries location from macOS version to macOS version. So if the dictionaries are no longer at the path below you can tell `apple-peeler` where to look by exporting `DICT_BASE` in your environment or using the `--base` option below. export DICT_BASE="/System/Library/AssetsV2/com_apple_MobileAsset_DictionaryServices_dictionaryOSX/" After that, useage is straightforward. Usage: apple-peeler [OPTIONS] Extract XML from Apple Dictionary files. Options: --base DIRECTORY The root directory of the OS X dictionaries. (Default: /System/Library/AssetsV2/com_apple _MobileAsset_DictionaryServices_dictionaryOS X/) [Env var DICT_BASE] --out DIRECTORY The path to place extracted XML files. -d, --dictionary [ all|Arabic - English|Danish|Duden Dictionary Data Set I|Dutch| Dutch - English|French|French - English|French - German|German - English| Hebrew|Hindi|Hindi - English|Indonesian - English|Italian| Italian - English|Korean|Korean - English|New Oxford American Dictionary| Norwegian|Oxford American Writer's Thesaurus| Oxford Dictionary of English|Oxford Thesaurus of English| Polish - English|Portuguese|Portuguese - English|Russian| Russian - English|Sanseido Super Daijirin| Sanseido The WISDOM English-Japanese Japanese-English Dictionary| Simplified Chinese - English|Simplified Chinese - Japanese|Spanish| Spanish - English|Swedish|Thai|Thai - English| The Standard Dictionary of Contemporary Chinese|Traditional Chinese| Traditional Chinese - English|Turkish|Vietnamese - English] The dictionary to extract or 'all'. (Default: all) [Accepts multiple] --format-xml / --no-format-xml Format the XML files using BeautifulSoup. (Default: False) --debug Output debug information to STDERR. (Default: False) --help Show this message and exit. ## Introduction I need a ton of dictionary data for prototyping my learning a language tool, [Parsnip](https://solarmist.net/), and licensing 40 dictionaries seems too expensive for a bootstrapper working on an MVP (I look forward to the day this is no longer true). Parsnip uses Natural Language Processing and Dictionaries to decouple the word <-> sentence tug-of-war that's existed as long as flashcards have been used for language learning. I.e., should I make a word (concept) or a sentence (example) flashcard? I care about what words I know for tracking purposes, but I want those words in context when I'm practicing. So the learning system breaks down sentences into lemmas (or dictionary form of a word) and a database of example sentences that the words appear in. This resolves the conceptual tug-of-war for flashcards. But by removing reference data from the flashcards themselves, I need to integrate reference material directly into Parsnip's UI. [JMDict](https://www.edrdg.org/wiki/index.php/JMdict-EDICT_Dictionary_Project) is a great open source project for this, but that only covers a single language. So, I've been keeping my eyes open for people working on extracting the data from Apple's bundled dictionaries. This has been a community effort that's spanned several years. My contribution is to collect the results, clear up some details about the file format, and package it into a general command-line tool. ## References This is inspired by [Reverse-Engineering Apple Dictionary](https://fmentzer.github.io/posts/2020/dictionary/). And the discussion on Hacker News [Hacker News: Reverse-Engineering Apple Dictionary (2020)](https://news.ycombinator.com/item?id=28505406). Special thanks to tim-- and enragedcacti who introduced me to `binwalk`. And dunham who mentioned the random bytes looking like `int`s of payload sizes. Additionally, I've found these posts informative: - https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/DictionaryServicesProgGuide/prepare/prepare.html#//apple_ref/doc/uid/TP40006152-CH3-SW7 - https://jadedtuna.github.io/apple-dictionary/ - https://josephg.com/blog/reverse-engineering-apple-dictionaries/ - https://josephg.com/blog/apple-dictionaries-part-2/ - https://gist.github.com/josephg/5e134adf70760ee7e49d


نیازمندی

مقدار نام
>=4.10.0,<5.0.0 beautifulsoup4
>=8.0.1,<9.0.0 click
>=4.6.3,<5.0.0 lxml


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl apple-peeler-0.1.1:

    pip install apple-peeler-0.1.1.whl


نصب پکیج tar.gz apple-peeler-0.1.1:

    pip install apple-peeler-0.1.1.tar.gz