معرفی شرکت ها


appel-geocode-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A faster spatial join/reverse geocoding algorithm
ویژگی مقدار
سیستم عامل -
نام فایل appel-geocode-1.1.0
نام appel-geocode
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gabriel Coimbra
ایمیل نویسنده gcoimbra@riseup.net
آدرس صفحه اصلی https://github.com/gcoimbra/appel
آدرس اینترنتی https://pypi.org/project/appel-geocode/
مجوز -
# Project Title APPEL: A faster spatial join/reverse geocoding threaded algorithm ## Getting Started Spatial joins are like common relational database joins, just for geographic data. In general, we have a set of coordinates and we want to know which point is in which polygon, this operation is described as reverse geocoding. The algorithm relies on standard Point-In-Polygon operations but tends to minimize then. APPEL proposes a new way to spatial joins that promises to be faster than than trivial brute force and R-Tree implementation of PostGIS and GeoPandas. For a million points it takes about 14 seconds to finish locating, while PostGIS takes about 7 minutes and GeoPandas takes 1 minutes and 7 seconds. All on the same machine. To do so, the polygons to be searched are organized through a tree. The tree levels are predefined based on states, mesoregions, microregions and municipalities. In addition, it is considered that the geographic points provided by users are more likely to be located in more populated regions. Therefore, these areas are sorted to be the first to be found at each level of the tree. Currently, the systems works only for Brazil territory and locates the cities of each point. But it's principle is extensible for any geographical region. You'll need just a shapefile (or equivalent) with each region and subregions population to build the data structure. These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system. ### Prerequisites ``` Python 3.6 GeoPandas Numpy Shapely ``` ### Installing A step by step series of examples that tell you how to get a development env running Just use pip. ``` pip install appel ``` By default, it comes with a tree for Brazil's regions. To use, you must input the longitude and latitudes in the query function: ``` from numpy import array from appel.searchtree import SearchTree search = SearchTree() longitudes = array([2.748047, -20.890625], dtype='float32') latitudes = array([-63.03125, -49.53125], dtype='float32') results = search.query(longitudes, latitudes) print(results) ``` It will return a dataframe with latitudes longitudes and the city id. ## Running the tests Just run methods on the classes of test package. ## Built With * [GeoPandas](http://geopandas.org/) - Essential for reading shapely files and build the search data structure. * [Shapely](https://github.com/Toblerity/Shapely) - vectorized contains function is the core of the search algorithm. ## Contributing Currently I don't have a fixed system. Use issues for critics, help or any question in general. ## Authors * **Gabriel Coimbra** - [gcoimbra](https://github.com/gcoimbra/) ## License This project is licensed under the GNU Affero General Public License - see the [LICENSE.md](LICENSE.md) file for details ## Acknowledgments Thanks [PurpleBooth](https://gist.github.com/PurpleBooth) for this [README.md](https://gist.github.com/PurpleBooth/109311bb0361f32d87a2) template.


نیازمندی

مقدار نام
==3.1.1 matplotlib
==1.6.4.post2 Shapely
==0.5.1 geopandas
==1.17.2 numpy
==0.25.1 pandas
==3.7.4 typing-extensions


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl appel-geocode-1.1.0:

    pip install appel-geocode-1.1.0.whl


نصب پکیج tar.gz appel-geocode-1.1.0:

    pip install appel-geocode-1.1.0.tar.gz