معرفی شرکت ها


apiql-0.12.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A simple API Query Language
ویژگی مقدار
سیستم عامل -
نام فایل apiql-0.12.6
نام apiql
نسخه کتابخانه 0.12.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Artur Karazniewicz
ایمیل نویسنده karaznie+pip@protonmail.com
آدرس صفحه اصلی https://github.com/karaznie/apiql
آدرس اینترنتی https://pypi.org/project/apiql/
مجوز -
## ApiQL - a Simple API query language for RESTful services ApiQL is a simple domain language for API consumers to express REST resource filtering criteria in a concise, powerful, URL friendly way. # Installing ApiQL can be installed and updated with pip: ``pip install apiql`` ### API query language Api query language provides set of predicates and expressions allowing API providers and consumers to build complex resource queries. While ApiQL syntax is in largely SQL inspired, it is designed to be technology agnostic. ApiQL is translated into abstract criteria tree and can be transformed into backend specific functionality. #### ApiQL query syntax ApiQL query is set of basic predicates which may be then composed using conjunctions (`and`) or disjunctions (`or`) into expressions. For example, let's assume we have REST API exposing movie information: `wget -q -O - 'http://awso.me/api/movies'` ```javascript [{ "title": "Monty Python and the Holy Grail", "release_year": 1975, "original_title": "Monty Python and the Holy Grail" "created_datetime": "2019-05-01T09:17:06.527181+00:00", "external_id": "762", "genres": [{"id" : 1, "name": "Comedy"}, {"id" : 2, "name": "Adventure"}, {"id" : 2, "name": "Fantasy"}], "id": 1, "plot": "King Arthur, accompanied by his squire, recruits his Knights of the Round Table [...]", "rating": 6.0, "source": "tmdb", "ignored": false }, ... ] ``` #### ApiQL query basics In its most basic form, ApiQL query is just single predicate: ``wget -q -O - 'http://awso.me/api/movies?filter=title=="Monty Python and the Holy Grail"'`` which will filter only "Monty Python and the Holy Grails" resources. (whole ApiQL query is contained within single URL query param; note that ApiQL uses `==` operator for equality, not ``=``). *Note: ApiQL was designed to be as much URL friendly as possible, however all ApiQL queries, should be URL-encoded. In this document we use ``wget`` as it URL-encodes all URLs by default; ``curl`` has little bit more arcane syntax in this case: ``curl -G --data-urlencode "filter=[my ApiQL query]" http://awso.me/api/movies``* ##### ApiQL predicates In reality API consumers require much more than simple ``==`` predicate. ApiQL supports following set of predicates: * `==`, * `!=`, * `>`, * `>=`, * `<`, * `<=`, * `like` - equivalent SQL LIKE operator, however You don't need explicitly add `%`, * `ilike`- case insensitive version of `like`, * `notlike` - equivalent SQL NOT LIKE operator, * `notilike` - case insensitive version on `notlike`, * `startswith` - equivalent to SQL STARTS WITH operator, * `istartswith` - case insensitive version of `startswith`, * `endswith` - equivalent to SQL ENDS WITH, * `iendswith` - case insensitive version of `iendswith`, * `contains` - alias to `like`, * `notcontains` - alias to `notlike`, * `icontains` - case insensitive version of `contains`, * `inotcontains` - case insensitive version of `notcontains`, * `in` - equivalent to SQL IN operator, * `notin` equivalent to SQL NOT IN operator. For example, query: ``wget -q -O - 'http://awso.me/api/movies?filter=title ilike "Holy"'`` will return all movies matching "Holy": "Monty Python and the Holy Grails", "Holy Money" and possibly bunch of other filcks matching "Holy". and query: ``wget -q -O - 'http://awso.me/api/movies?filter=release_year>=1975'`` will return all movies released in 1975 or later. ##### Query literals Literals are the values, things that can be on the right hand side of predicate. So far we have seen strings ("Holy") and numeric literals (1975). ApiQL support bunch of other literals too: * Strings - all string literals are unicode and are following the same rules like JSON string literals. ApiQL strings are always double-quoted (for example, this is a string: "This is a string", this however: 'not a string' *is not*), and escaped ("The movie: \\"The Movie\\""). * Numbers - are basically integers and floats: `release_year != 2003` or `rating > 3.3` or even `rating > -1.6E-35`. * Boolean - `true` and `false` are translated into platform specific booleans. Example usage: `ingored != false` * Nil - special `null` literal is translated into platform specific literal, for example: `genres != null` * Datetime - literal representing datetime: `created_datetime >= datetime("2019-05-01T08:00:00.527181+00:00")`. Out of the box ApiQL supports ISO-8601 datetime formats (however, this behavior can be customized). * Tuples - represents series of values in `in` and `notin` clauses: `release_year notin (1975, 2011)`. Tuples can contain coma separated list of other literals: `release_date in (flase, null, datetime("datetime("1975-01-01T00:00:00.000000+00:00"))` #### Combining queries Queries can be combined into more complicated expressions by grouping atomic predicates (separated by `;`). For example: ``wget -q -O - 'http://awso.me/api/movies?filter=title ilike "Holy";release_year>1975;ignored!=null'`` predicates in this query are interpreted as `conjunction` (`and`), returning all movies with `title` matching "Holy" *and* released after 1975 which are not marked as `ignored`. #### Logical expressions ApiQL supports logical `conjunctions` (`and`) and `disjunctions` (`or`); both of them can nest predicates: `and(criteria(;criteria)*)`and`or(criteria(;criteria)*)` Query below, is equivalent to the previous one: ``wget -q -O - 'http://awso.me/api/movies?filter=and(title ilike "Holy";release_year > 1975;ignored != true)'`` This one, however: ``wget -q -O -'http://awso.me/api/movies?filter=or(title ilike "Holy";release_year>1975;ignored!=true)'`` will return all movies with titles matching "Holy" *or* released after 1975 *or* not ignored. Conjunctions and Disjunctions can be nested. Let's say we want to filter movies with rating greater than 7 or source is "IMDB", however we would like to filter only not-ignored resources: ``wget -q -O - 'http://awso.me/api/movies?filter=and(or(rating>7;source="IMDB");ignored!=flase)'`` ### Parsing ApiQL queries So far, so good. Now, how ApiQL Queries can actually be interpreted by API data store? ApiQL queries are internally translated into python data structure (syntax tree) represented by`Crtieria` class. ``Criteria`` along with `Predicate`, `Conjunction` and `Disjunction` fully represents parsed query tree. `Criteria` class aggregates list of `Criterion`. `Criterion` just abstract atomic criteria element; it's either: * simple `Predicate` an atomic logical expression (for example `Predicate('title', '==', 'Apocalypse Now')` for query `title=="Apocalypse Now"`) * `Conjunction` which again is just logical ``and`` operator with group of predicates `Conjunction([Predicate('title','==', 'Apocalypse Now'),Predicate('release_year','>', 1975)])` for query `and(title=="Apocalypse Now";release_year>1975)` * `Disjunction` - logical ``or`` operator Parsing ApiQL query with python: ```python import apiql.parser as parser from apiql.criteria import Criteria, Conjunction, Disjunction, Predicate # ... parsed_criteria = parser.parse('and(title like "Monty";genres == null;ignored!=false;release_year<=1975)') syntax_tree = Criteria( [Conjunction([ Predicate('title', 'like', 'Monty'), Predicate('genres', '==', None), Predicate('ignored', '!=', False), Predicate('release_year', '<=', 1975) ])] ) # parsed_criteria is equal to syntax_tree assertEqual(syntax_tree, parsed_criteria) ``` ### A Tour of queries Now we can actually use ApiQL to filter resources. Out of the box ApiQL provides SQLAlchemy ORM integration (it can be, however integrated with other backends). This section showcases all basic query examples. Complete list of query capabilities can be found in the test suite. All examples will use this sample data model: ```python Base = declarative_base() class Genre(Base): __tablename__ = 'genre' id = Column(Integer, primary_key=True) name = Column(String) genre_id = Column(Integer) movie_id = Column(Integer, ForeignKey('movie.id'), nullable=True) class Movie(Base): __tablename__ = 'movie' id = Column(Integer, primary_key=True) title = Column(String) original_title = Column(String) release_year = Column(Integer) source = Column(String) rating = Column(String) created_datetime = Column(DateTime, default=datetime.utcnow) genres = relationship('Genre', cascade="all", backref="movie", lazy=True) drama = Genre(name="Drama", genre_id=1) scifi = Genre(name="Sci-Fi", genre_id=2) war = Genre(name="War", genre_id=3) adventure = Genre(name="Adventure", genre_id=4) comedy = Genre(name="Comedy", genre_id=5) monty_python = Movie(title="Monty Python and the Holy Grail", release_year=1975, source="IMDB", rating="8", genres=[comedy, adventure]) jurassic_park = Movie(title="Jurassic Park", release_year=1993, source='IMDB', rating="9", genres=[adventure, scifi]) apocalypse_now = Movie(title="Apocalypse Now", release_year=1979, source="TMDB", rating="9", original_title="Apocalypse Now, The", genres=[drama, war]) gosford_park = Movie(title="Gosford Park", release_year=2001, source='IMDB', rating="7", genres=[drama]) session.add(monty_python) session.add(jurassic_park) session.add(apocalypse_now) session.add(gosford_park) ``` A main entry point to SQLAlchemy integration is ``with_criteria`` extension method, which extends plain SQLAlchemy ``Query`` object with ApiQL capabilities. ``with_criteria`` is following basic SQLAlchemy conventions, so it can be freely used with native ``filter_by`` or ``filter`` functions. Following examples show ApiQL queries and their native SQLAlchemy representations. #### Simple conjunction criteria ```python from apiql.backends.sqlalchemy.orm import with_criteria actual = session.query(Movie).with_criteria('and(rating=="8";release_year==1975)') # is equivalent to expected = session.query(Movie).filter( and_( Movie.rating == 8, Movie.release_year == 1975 ) ) ``` #### Simple disjunction criteria ```python from apiql.backends.sqlalchemy.orm import with_criteria actual = session.query(Movie).with_criteria('or(rating=="8";release_year==1993;source=="TMDB")') # is equivalent to expected = session.query(Movie).filter( or_( Movie.rating == 8, Movie.release_year == 1993, Movie.source == 'TMDB' ) ) ``` #### `<` and `>` predicates ```python actual = session.query(Movie).with_criteria('and(release_year > 1975; release_year < 2001)') # is equivalent to expected = session.query(Movie).filter( and_( Movie.release_year > 1975, Movie.release_year < 2001 ) ) ``` #### `like` and `ilike` predicates ```python actual = session.query(Movie).with_criteria('or(title like "THE"; original_title ilike "THE")') # is equivalent to expected = session.query(Movie).filter( or_( Movie.title.like('%THE%'), Movie.original_title.ilike("%THE%") ) ) ``` #### `notlike` predicate ```python actual = session.query(Movie).with_criteria('and(title notlike "the"; release_year > 1990)') # is equivalent to expected = session.query(Movie).filter( and_( Movie.title.notlike('%the%'), Movie.release_year > 1990 ) ) ``` #### `in` and `notin` predicate ```python actual = session.query(Movie).with_criteria('release_year in (1979, 2001))') # is equivalent to expected = session.query(Movie).filter( Movie.release_year.in_((1979, 2001)) ) ``` and ```python actual = session.query(Movie).with_criteria('release_year notin (1979, 2001))') # is equivalent to expected = session.query(Movie).filter( Movie.release_year.notin_((1979, 2001)) ) ``` #### ``IS NULL`` and ``IS NOT NULL`` predicates ```python actual = session.query(Movie).with_criteria('original_title == null)') # is equivalent to expected = session.query(Movie).filter( Movie.original_title.is_(None) ) ``` and ```python actual = session.query(Movie).with_criteria('original_title != null)') # is equivalent to expected = session.query(Movie).filter( Movie.original_title.isnot(None) ) ``` #### `startswith` and `endswith` predicates Following queries are equivalents ```python actual = session.query(Movie).with_criteria('title startswith "The")') # is equivalent to expected = session.query(Movie).filter( Movie.title.startswith("The") ) ``` and ```python actual = session.query(Movie).with_criteria('title endswith "Park")') # is equivalent to expected = session.query(Movie).filter( Movie.title.endswith("Park") ) ``` #### `contains` predicate ```python actual = session.query(Movie).with_criteria('or(original_title contains "The";title contains "the")') # is equivalent to expected = session.query(Movie).filter( or_( Movie.original_title.contains('The'), Movie.title.contains('the') ) ) ``` #### `datetime` literals Following queries are equivalents ```python now = datetime.datetime.now().isoformat() actual = session.query(Movie).with_criteria('created_datetime<datetime("{}")'.format(now)) # is equivalent to expected = session.query(Movie).filter( Movie.created_datetime < datetime.datetime.fromisoformat(now) ) ``` #### Joins and aliased entities Joins are supported as well. Following queries are equivalents: ```python actual = session.query(Movie).join(Genre).with_criteria('name=="War"') # is equivalent to expected = session.query(Movie).join(Genre).filter( Genre.name == 'War' ) ``` ApiQL supports `aliased` entities: ```python kind = aliased(Genre, name='kind') actual = session.query(Movie).join(kind).with_criteria('kind.name=="War"') # is equivalent to expected = session.query(Movie).join(kind).filter( kind.name == 'War' ) ``` ### Complete API example with Flask-SQLAlchemy ApiQL is technology agnostic whenever possible and can be used with all popular python web frameworks (Flask, Bottle, Django etc.). (side note: ApiQL reference implementation fully supports Flask-SQLAlchemy extension as well). Here's is a simple Flask API with ApiQL filtering (assuming ``Movie`` and ``Genre`` classes are ``json`` serializable) ```python from apiql.backends.sqlalchemy.orm import with_criteria # ... @app.route("/api/movies", methods=["GET"]) def movies(): criteria = request.args.get('filter', '') return jsonify(Movie.query.join(Genre).with_criteria(criteria).all()) ``` Now we can filter resources with ApiQL: ``wget -q -O - 'localhost:5000/api/movies?filter=and(or(title like "Python";original_title like "Python");source=="TMDB")'`` Note: that we can use empty string when API consumer do not specify filtering query. This query: ``wget -q -O - 'localhost:5000/api/movies'`` will return all, unfiltered resources. #### Whitelisting API attributes In most cases API providers gives only limited access to attributes consumers can use. ApiQL supports this capability by _whitelisting_ which attributes can be accessed in queries (this does not change however what attributes are exposed in resources). Whitelists can be enabled with `whitelisted` `Query` extension method. _By default all resource attributes are are whitelisted_. ##### Whitelisting only specific attributes ApiQL `just` builder will only whitelist explicitly specified resource attributes. ```python from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed @app.route("/api/movies", methods=["GET"]) def movies(): criteria = request.args.get('filter', '') query = Movie.query.join(Genre).whitelisted(just((Movie.title, Movie.release_year))).with_criteria(criteria) return jsonify(query.all()) ``` Now, this query: ``wget -q -O - 'http://localhost:5000/api/movies?filter=release_year==2001'`` will work just fine, as Movie.release_year is whitelisted, however, this call: ``wget -q -O - 'http://localhost:5000/api/movies?filter=rating=="8.0"'`` will fail with: ``ValueError: Invalid query attribute: 'rating'``. ##### Whitelisting all attributes `everything` builder whitelists *all* entity (or entities) attributes. This is default behavior when whitelist is not specified. ApiQL engine will scan all ``Query`` entities, and whitelist all attributes. ```python from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed @app.route("/api/movies", methods=["GET"]) def movies(): criteria = request.args.get('filter', '') query = Movie.query.join(Genre).whitelisted(everything(Movie)).with_criteria(criteria) return jsonify(query.all()) ``` Note, that in this case, only ``Movie`` attributes are whitelisted, while all ``Genre`` attributes are not. In this case: ``wget -q -O - 'http://localhost:5000/api/movies?filter=rating=="8.0"'`` will work as expected. However, this query: ``wget -q -O - 'http://localhost:5000/api/movies?filter=name=="Sci-Fi"'`` will fail again. ##### Whitelisting all attributes, except specified set of attributes `everything_but` builder whitelists all attributes, except those specified in ``but`` clause. ```python from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed @app.route("/api/movies", methods=["GET"]) def movies(): criteria = request.args.get('filter', '') query = Movie.query.join(Genre).whitelisted(everything_but(entities=Movie, but=Movie.id)).with_criteria(criteria) return jsonify(query.all()) ``` Now, this call will fail as ``Movie.id`` is not whitelisted: ``wget -q -O - 'http://localhost:5000/api/movies?filter=id==1'`` ##### Merging whitelists Finally `merged` whitelist builder can combine (merge) two whitelists. Following example: ```python from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed @app.route("/api/movies", methods=["GET"]) def movies(): criteria = request.args.get('filter', '') query = Movie.query.join(Genre).whitelisted(merged([everything(Movie), just(Genre.name)])).with_criteria(criteria) return jsonify(query.all()) ``` will whitelist all attributes from `Movie` and just `Genre.name` from ``Genre``. #### Prefixed attributes Query attributes can be prefixed to be more consumer friendly. For instance, in above examples, `name` attribute will resolve to `Genre.name` (we don't have column name collision here between ``Movie`` and ``Genre``). However from consumer perspective it would be much elegant to map this attribute to something more obvious; `prefixed` does exactly this. Here's an example: ```python from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed actual = session.query(Movie).join(Genre) \ .whitelisted(everything(Movie, prefixed('genre', Genre))) \ .with_criteria('rating=="9";genre.name=="War"') # is equivalent to expected = session.query(Movie).filter(Movie.rating == "9") \ .join(Genre).filter(Genre.name == 'War') ``` #### Mapped attributes Sometimes we would like to expose query attribute under different name (for example we would like to keep backward contract compatibility). `mapped` function is does just for this. Let's say we would like to map `Genre.name` to query attribute `kind`, so we can use nicer queries like ``kind=="War"`` ```python from apiql.backends.sqlalchemy.orm import with_criteria, whitelisted from apiql.backends.sqlalchemy.orm.whitelist import everything, everything_but, just, mapped, prefixed @app.route("/api/movies", methods=["GET"]) def movies(): criteria = request.args.get('filter', '') query = Movie.query.join(Genre).whitelisted(just(mapped('kind', Genre.name))).with_criteria(criteria) return jsonify(query.all()) ```


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl apiql-0.12.6:

    pip install apiql-0.12.6.whl


نصب پکیج tar.gz apiql-0.12.6:

    pip install apiql-0.12.6.tar.gz