معرفی شرکت ها


apache-liminal-0.0.5rc2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package for authoring and deploying machine learning workflows
ویژگی مقدار
سیستم عامل -
نام فایل apache-liminal-0.0.5rc2
نام apache-liminal
نسخه کتابخانه 0.0.5rc2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده dev@liminal.apache.org
ایمیل نویسنده dev@liminal.apache.org
آدرس صفحه اصلی https://github.com/apache/incubator-liminal
آدرس اینترنتی https://pypi.org/project/apache-liminal/
مجوز Apache License, Version 2.0
<!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Apache Liminal Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way. The platform provides the abstractions and declarative capabilities for data extraction & feature engineering followed by model training and serving. Liminal's goal is to operationalize the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production, freeing them from engineering and non-functional tasks, and allowing them to focus on machine learning code and artifacts. # Basics Using simple YAML configuration, create your own schedule data pipelines (a sequence of tasks to perform), application servers, and more. ## Getting Started A simple getting stated guide for Liminal can be found [here](docs/getting-started/hello_world.md) ## Apache Liminal Documentation Full documentation of Apache Liminal can be found [here](docs/liminal) ## High Level Architecture High level architecture documentation can be found [here](docs/architecture.md) ## Example YAML config file ```yaml --- name: MyLiminalStack owner: Bosco Albert Baracus volumes: - volume: myvol1 local: path: /Users/me/myvol1 images: - image: my_python_task_img type: python source: write_inputs - image: my_parallelized_python_task_img source: write_outputs - image: my_server_image type: python_server source: myserver endpoints: - endpoint: /myendpoint1 module: my_server function: myendpoint1func pipelines: - pipeline: my_pipeline start_date: 1970-01-01 timeout_minutes: 45 schedule: 0 * 1 * * metrics: namespace: TestNamespace backends: [ 'cloudwatch' ] tasks: - task: my_python_task type: python description: static input task image: my_python_task_img env_vars: NUM_FILES: 10 NUM_SPLITS: 3 mounts: - mount: mymount volume: myvol1 path: /mnt/vol1 cmd: python -u write_inputs.py - task: my_parallelized_python_task type: python description: parallelized python task image: my_parallelized_python_task_img env_vars: FOO: BAR executors: 3 mounts: - mount: mymount volume: myvol1 path: /mnt/vol1 cmd: python -u write_inputs.py services: - service: my_python_server description: my python server image: my_server_image ``` # Installation 1. Install this repository (HEAD) ```bash pip install git+https://github.com/apache/incubator-liminal.git ``` 2. Optional: set LIMINAL_HOME to path of your choice (if not set, will default to ~/liminal_home) ```bash echo 'export LIMINAL_HOME=</path/to/some/folder>' >> ~/.bash_profile && source ~/.bash_profile ``` # Authoring pipelines This involves at minimum creating a single file called liminal.yml as in the example above. If your pipeline requires custom python code to implement tasks, they should be organized [like this](https://github.com/apache/incubator-liminal/tree/master/tests/runners/airflow/liminal) If your pipeline introduces imports of external packages which are not already a part of the liminal framework (i.e. you had to pip install them yourself), you need to also provide a requirements.txt in the root of your project. # Testing the pipeline locally When your pipeline code is ready, you can test it by running it locally on your machine. 1. Ensure you have The Docker engine running locally, and enable a local Kubernetes cluster: ![Kubernetes configured](https://raw.githubusercontent.com/apache/incubator-liminal/master/images/k8s_running.png) And allocate it at least 3 CPUs (under "Resources" in the Docker preference UI). If you want to execute your pipeline on a remote kubernetes cluster, make sure the cluster is configured using: ```bash kubectl config set-context <your remote kubernetes cluster> ``` 2. Build the docker images used by your pipeline. In the example pipeline above, you can see that tasks and services have an "image" field - such as "my_static_input_task_image". This means that the task is executed inside a docker container, and the docker container is created from a docker image where various code and libraries are installed. You can take a look at what the build process looks like, e.g. [here](https://github.com/apache/incubator-liminal/tree/master/liminal/build/image/python) In order for the images to be available for your pipeline, you'll need to build them locally: ```bash cd </path/to/your/liminal/code> liminal build ``` You'll see that a number of outputs indicating various docker images built. 3. Create a kubernetes local volume \ In case your Yaml includes working with [volumes](https://github.com/apache/incubator-liminal/blob/6253f8b2c9dc244af032979ec6d462dc3e07e170/docs/getting_started.md#mounted-volumes) please first run the following command: ```bash cd </path/to/your/liminal/code> liminal create ``` 4. Deploy the pipeline: ```bash cd </path/to/your/liminal/code> liminal deploy ``` Note: after upgrading liminal, it's recommended to issue the command ```bash liminal deploy --clean ``` This will rebuild the airlfow docker containers from scratch with a fresh version of liminal, ensuring consistency. 5. Start the server ```bash liminal start ``` 6. Stop the server ```bash liminal stop ``` 7. Display the server logs ```bash liminal logs --follow/--tail Number of lines to show from the end of the log: liminal logs --tail=10 Follow log output: liminal logs --follow ``` 8. Navigate to [http://localhost:8080/admin](http://localhost:8080/admin) 9. You should see your ![pipeline](https://raw.githubusercontent.com/apache/incubator-liminal/master/images/airflow.png) The pipeline is scheduled to run according to the ```json schedule: 0 * 1 * *``` field in the .yml file you provided. 10. To manually activate your pipeline: - Click your pipeline and then click "trigger DAG" - Click "Graph view" You should see the steps in your pipeline getting executed in "real time" by clicking "Refresh" periodically. ![Pipeline activation](https://raw.githubusercontent.com/apache/incubator-liminal/master/images/airflow_trigger.png) # Contributing More information on contributing can be found [here](CONTRIBUTING.md) # Community The Liminal community holds a public call every Monday - [Liminal Community Calendar](https://calendar.google.com/calendar/u/0/r?cid=jom1i20emghura6s6ookhe2skk@group.calendar.google.com) - [Dev-Mailing-List](https://lists.apache.org/list.html?dev@liminal.apache.org) ## Running Tests (for contributors) When doing local development and running Liminal unit-tests, make sure to set LIMINAL_STAND_ALONE_MODE=True


نیازمندی

مقدار نام
==4.2.0 docker
==2.1.2 apache-airflow
==7.1.1 click
==1.1.1 Flask
==5.4.1 pyyaml
==1.17.112 boto3
==1.20.112 botocore
==0.36.2 wheel
~=1.1.0 termcolor
==0.4.0 docker-pycreds
==3.7.4.1 typing
==3.1.11 GitPython
==1.3.14 moto
==3.1.1 diskcache
==0.3.31 croniter
==2020.5 pytz
==2020.1 pytzdata
==1.1.0 freezegun
<4.0,>=3.3.0 statsd
~=1.3.15 sqlalchemy
==3.4.0 flatdict
<2.11.0,>=2.10.1 jinja2
==2.0.1 python-json-logger
==2.26.0 requests
==1.4.0 apache-airflow-providers-amazon
==1.0.2 apache-airflow-providers-cncf-kubernetes
==0.53.0 cfn-lint
==2.16.0 pre-commit
==1.0.1 Werkzeug
==1.1.0 itsdangerous
==1.1.1 MarkupSafe


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl apache-liminal-0.0.5rc2:

    pip install apache-liminal-0.0.5rc2.whl


نصب پکیج tar.gz apache-liminal-0.0.5rc2:

    pip install apache-liminal-0.0.5rc2.tar.gz