معرفی شرکت ها


anyHR-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Library implementing hit-and-run methods for sampling open bounded sets.
ویژگی مقدار
سیستم عامل -
نام فایل anyHR-1.0.1
نام anyHR
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Felix Gigler, Dejan Nickovic, Cristinel Mateis, Nicolas Basset, Thao Dang
ایمیل نویسنده felix.gigler.fl@ait.ac.at, dejan.nickovic@ait.ac.at
آدرس صفحه اصلی https://github.com/figlerg/anyHR
آدرس اینترنتی https://pypi.org/project/anyHR/
مجوز BSD
# anyHR A collection of *hit-and-run Markov Chain Monte Carlo* algorithms for sampling of n-dimensional sets defined by arbitrary inequality constraints. ## Introduction This tool implements some variants of the *hit and run* or *mixing* algorithms. Let **S** be an open bounded set in n dimensions defined by inequality constraints of the form f(x<sub>1</sub>,..., x<sub>n</sub>) < g(x<sub>1</sub>,..., x<sub>n</sub>), where f and g are arbitrary functions. Let all parameters also have parameter ranges defined as intervals, so **S** is a subset of a hyperrectangle. (As an example, one could impose ``x + y < 1`` in the two dimensional plane, with x in (0,1) and y in (0,1)). Hit-and-run algorithms can be used to get a sample uniformly at random inside of this set **S**. **anyHR** parses the parameters and their respective constraints and returns a number of samples that satisfy this spec, while being distributed uniformly on the set of allowed values. For more information on mixing algorithms see ## Installation It is necessary to have a working installation of Python 3, [pip](https://pip.pypa.io/en/stable/installing/) and [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) for the following installation process. Open the target installation directory in a terminal and type ```bash pip install anyHR ``` ## Use A minimal running example for the above specification can be sampled with the following code: ````python # Import modules import numpy as np import matplotlib.pyplot as plt from anyHR.constraint.Constraint import Constraints from anyHR.hit_and_run.hit_and_run import HitAndRun # Define variables to use var_names = ['x', 'y'] # Define the set of constraint c = Constraints(var_names) c.add_constraint('x+y < 1') # Define the bounding hyperrectangle x_bound = [0, 1] y_bound = [0, 1] bounds = [x_bound, y_bound] # build hr object hr = HitAndRun(constraint=c, bounding_box=bounds) # generate samples samples = [] total_rejections = 0 nb_samples = 100 mixing = 10 for i in range(nb_samples * mixing): sample, rejections = hr.next_sample() # do some mixing in between samples if i % mixing == 0: samples.append(sample) xs = [sample[0] for sample in samples] ys = [sample[1] for sample in samples] plt.scatter(xs,ys) plt.show() ```` ## References For more information about mixing algorithms, see: - Smith, R. L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Operations Research, 32(6), 1296-1308. - Kiatsupaibul, S., Smith, R. L., & Zabinsky, Z. B. (2011). An analysis of a variation of hit-and-run for uniform sampling from general regions. ACM Transactions on Modeling and Computer Simulation (TOMACS), 21(3), 1-11. - Neal, R. M. (2003). Slice sampling. The annals of statistics, 31(3), 705-767. We also thank Abraham Lee for his implementation of the PSO algorithms which is used here. See https://github.com/tisimst/pyswarm for more information.


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl anyHR-1.0.1:

    pip install anyHR-1.0.1.whl


نصب پکیج tar.gz anyHR-1.0.1:

    pip install anyHR-1.0.1.tar.gz