معرفی شرکت ها


antspynet-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A collection of deep learning architectures ported to the python language and tools for basic medical image processing.
ویژگی مقدار
سیستم عامل -
نام فایل antspynet-0.2.0
نام antspynet
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nicholas J. Tustison and Brian B. Avants and Nick Cullen
ایمیل نویسنده ntustison@gmail.com
آدرس صفحه اصلی https://github.com/ANTsX/ANTsPyNet
آدرس اینترنتی https://pypi.org/project/antspynet/
مجوز -
[![Build Status](https://travis-ci.org/ANTsX/ANTsPyNet.svg?branch=master)](https://travis-ci.org/ANTsX/ANTsPyNet) [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg)](code_of_conduct.md) # ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Based on `keras` and `tensorflow` with cross-compatibility with our R analog [ANTsRNet](https://github.com/ANTsX/ANTsRNet/). Documentation page [https://antsx.github.io/ANTsPyNet/](https://antsx.github.io/ANTsPyNet/). ![ANTsXNetTools](docs/figures/coreANTsXNetTools.png) For MacOS and Linux, may install with: ```bash pip install antspynet ``` ## Architectures ### Image voxelwise segmentation/regression * [U-Net (2-D, 3-D)](https://arxiv.org/abs/1505.04597) * [U-Net + ResNet (2-D, 3-D)](https://arxiv.org/abs/1608.04117) * [Dense U-Net (2-D, 3-D)](https://arxiv.org/pdf/1709.07330.pdf) ### Image classification/regression * [AlexNet (2-D, 3-D)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) * [VGG (2-D, 3-D)](https://arxiv.org/abs/1409.1556) * [ResNet (2-D, 3-D)](https://arxiv.org/abs/1512.03385) * [ResNeXt (2-D, 3-D)](https://arxiv.org/abs/1611.05431) * [WideResNet (2-D, 3-D)](http://arxiv.org/abs/1605.07146) * [DenseNet (2-D, 3-D)](https://arxiv.org/abs/1608.06993) ### Object detection ### Image super-resolution * [Super-resolution convolutional neural network (SRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092) * [Expanded super-resolution (ESRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092) * [Denoising auto encoder super-resolution (DSRCNN) (2-D, 3-D)]() * [Deep denoise super-resolution (DDSRCNN) (2-D, 3-D)](https://arxiv.org/abs/1606.08921) * [ResNet super-resolution (SRResNet) (2-D, 3-D)](https://arxiv.org/abs/1609.04802) * [Deep back-projection network (DBPN) (2-D, 3-D)](https://arxiv.org/abs/1803.02735) * [Super resolution GAN](https://arxiv.org/abs/1609.04802) ### Registration and transforms * [Spatial transformer network (STN) (2-D, 3-D)](https://arxiv.org/abs/1506.02025) ### Generative adverserial networks * [Generative adverserial network (GAN)](https://arxiv.org/abs/1406.2661) * [Deep Convolutional GAN](https://arxiv.org/abs/1511.06434) * [Wasserstein GAN](https://arxiv.org/abs/1701.07875) * [Improved Wasserstein GAN](https://arxiv.org/abs/1704.00028) * [Cycle GAN](https://arxiv.org/abs/1703.10593) * [Super resolution GAN](https://arxiv.org/abs/1609.04802) ### Clustering * [Deep embedded clustering (DEC)](https://arxiv.org/abs/1511.06335) * [Deep convolutional embedded clustering (DCEC)](https://xifengguo.github.io/papers/ICONIP17-DCEC.pdf) ## Applications * MRI super-resolution * Multi-modal brain extraction * T1 * T1 ["no brainer"](https://github.com/neuronets/nobrainer) * FLAIR * T2 * FA * BOLD * [T1/T2 infant](https://www.med.unc.edu/psych/research/psychiatry-department-research-programs/early-brain-development-research/) * Six-tissue Atropos brain segmentation * [Cortical thickness](https://www.medrxiv.org/content/10.1101/2020.10.19.20215392v1.full) * [Brain age](https://academic.oup.com/brain/article-abstract/143/7/2312/5863667?redirectedFrom=fulltext) * [Hippmapp3r hippocampal segmentation](https://pubmed.ncbi.nlm.nih.gov/31609046/) * [White matter hyperintensity segmentation](https://pubmed.ncbi.nlm.nih.gov/30125711/) * [Hypothalamus segmentation](https://pubmed.ncbi.nlm.nih.gov/32853816/) * [Claustrum segmentation](https://arxiv.org/abs/2008.03465) * Deep Flash * Desikan-Killiany-Tourville cortical labeling * Lung extraction * [Proton](https://www.ncbi.nlm.nih.gov/pubmed/30195415) * CT * [Functional lung segmentation](https://www.medrxiv.org/content/10.1101/2021.03.04.21252588v2) * [Neural style transfer](https://arxiv.org/abs/1508.06576) * Image quality assessment * [TID2013](https://www.sciencedirect.com/science/article/pii/S0923596514001490) * [KonIQ-10k](https://ieeexplore.ieee.org/document/8968750) ## Miscellaneous * [Mixture density networks (MDN)](https://publications.aston.ac.uk/373/1/NCRG_94_004.pdf) -------------------------------------- ## Installation * ANTsPyNet Installation: * Option 1: ``` $ git clone https://github.com/ANTsX/ANTsPyNet $ cd ANTsPyNet $ python setup.py install ``` ## Publications * Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. _Magnetic Resonance in Medicine_, 86(5):2822-2836, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/34227163/) * Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, _Academic Radiology_, 28(11):1481-1487, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/32771313/) * Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. _Scientific Reports_. 11(1):9068, Apr 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/) * Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, _Magnetic Resonance Imaging_, 64:142-153, Dec 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/31200026) * Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, _Academic Radiology_, 26(3):412-423, Mar 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30195415) * Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. _PLoS One_, 13(9):e0204071, Sep 2018. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30235253) * Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY [doi](https://doi.org/10.1007/978-1-4939-7647-8_2) ## Acknowledgments * We gratefully acknowledge the support of the NVIDIA Corporation with the donation of two Titan Xp GPUs used for this research. * We gratefully acknowledge the grant support of the [Office of Naval Research](https://www.onr.navy.mil) and [Cohen Veterans Bioscience](https://www.cohenveteransbioscience.org).


نیازمندی

مقدار نام
- antspyx
- keras
- scikit-learn
- tensorflow
- tensorflow-probability
- numpy
- requests
- statsmodels
- matplotlib


نحوه نصب


نصب پکیج whl antspynet-0.2.0:

    pip install antspynet-0.2.0.whl


نصب پکیج tar.gz antspynet-0.2.0:

    pip install antspynet-0.2.0.tar.gz