معرفی شرکت ها


antm-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Aligned Neural Topic Model for Exploring Evolving Topics
ویژگی مقدار
سیستم عامل -
نام فایل antm-0.1.1
نام antm
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hamed Rahimi
ایمیل نویسنده <hamed.rahimi@sorbonne-universite.fr
آدرس صفحه اصلی https://github.com/hamedR96/ANTM
آدرس اینترنتی https://pypi.org/project/antm/
مجوز -
[![PyPI - PyPi](https://img.shields.io/pypi/v/antm)](https://pypi.org/project/antm/) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://hamedrahimi.fr) [![arXiv](https://img.shields.io/badge/arXiv-2302.01501-<COLOR>.svg)](https://arxiv.org/abs/2302.01501) # ANTM ANTM: An Aligned Neural Topic Model for Exploring Evolving Topics ![alt text](https://github.com/hamedR96/ANTM/blob/main/diagram_Twitter.png?raw=true) Dynamic topic models are effective methods that primarily focus on studying the evolution of topics present in a collection of documents. These models are widely used for understanding trends, exploring public opinion in social networks, or tracking research progress and discoveries in scientific archives. Since topics are defined as clusters of semantically similar documents, it is necessary to observe the changes in the content or themes of these clusters in order to understand how topics evolve as new knowledge is discovered over time. Here, we introduce a dynamic neural topic model called ANTM, which uses document embeddings (data2vec) to compute clusters of semantically similar documents at different periods, and aligns document clusters to represent their evolution. This alignment procedure preserves the temporal similarity of document clusters over time and captures the semantic change of words characterized by their context within different periods. Experiments on four different datasets show that ANTM outperforms probabilistic dynamic topic models (e.g. DTM, DETM) and significantly improves topic coherence and diversity over other existing dynamic neural topic models (e.g. BERTopic). ## Installation Installation can be done using: ```bash pip install antm ``` ## Quick Start As implemented in the notebook, we can quickly start extracting evolving topics from DBLP dataset containing computer science articles. ### To Fit and Save a Model ```python from antm import ANTM import pandas as pd # load data df=pd.read_parquet("./data/dblpFullSchema_2000_2020_extract_big_data_2K.parquet") df=df[["abstract","year"]].rename(columns={"abstract":"content","year":"time"}) df=df.dropna().sort_values("time").reset_index(drop=True).reset_index() # choosing the windows size and overlapping length for time frames window_size = 6 overlap = 2 #initialize model model=ANTM(df,overlap,window_size,umap_n_neighbors=10, partioned_clusttering_size=5,mode="data2vec",num_words=10,path="./saved_data") #learn the model and save it topics_per_period=model.fit(save=True) #output is a list of timeframes including all the topics associated with that period ``` ### To Load a Model ```python from antm import ANTM import pandas as pd # load data df=pd.read_parquet("./data/dblpFullSchema_2000_2020_extract_big_data_2K.parquet") df=df[["abstract","year"]].rename(columns={"abstract":"content","year":"time"}) df=df.dropna().sort_values("time").reset_index(drop=True).reset_index() # choosing the windows size and overlapping length for time frames window_size = 6 overlap = 2 #initialize model model=ANTM(df,overlap,window_size,mode="data2vec",num_words=10,path="./saved_data") topics_per_period=model.load() ``` ### Plug-and-Play Functions ```python #find all the evolving topics model.save_evolution_topics_plots(display=False) #plots a random evolving topic with 2-dimensional document representations model.random_evolution_topic() #plots partioned clusters for each time frame model.plot_clusters_over_time() #plots all the evolving topics model.plot_evolving_topics() ``` ### Topic Quality Metrics ```python #returns pairwise jaccard diversity for each period model.get_periodwise_pairwise_jaccard_diversity() #returns proportion unique words diversity for each period model.get_periodwise_puw_diversity() #returns topic coherence for each period model.get_periodwise_topic_coherence(model="c_v") ``` ## Datasets [Arxiv articles](https://www.kaggle.com/datasets/Cornell-University/arxiv) [DBLP articles](https://nuage.lip6.fr/s/FLKwdzcsbqYMkat) [Elon Musk's Tweets](https://nuage.lip6.fr/s/XKkcWLAiDiykZ4D) [New York Times News](https://nuage.lip6.fr/s/XKkcWLAiDiykZ4D) ## Experiments You can use the notebooks provided in "./experiments" in order to run ANTM on other sequential datasets. ## Citation To cite [ANTM](https://arxiv.org/abs/2302.01501), please use the following bibtex reference: ```bibtext @misc{rahimi2023antm, title={ANTM: An Aligned Neural Topic Model for Exploring Evolving Topics}, author={Hamed Rahimi and Hubert Naacke and Camelia Constantin and Bernd Amann}, year={2023}, eprint={2302.01501}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```


نیازمندی

مقدار نام
- hdbscan
- swifter
- sentence-transformers
- umap-learn
- transformers
- torch
- gensim
- plotly
- matplotlib
- pyarrow
- kaleido


نحوه نصب


نصب پکیج whl antm-0.1.1:

    pip install antm-0.1.1.whl


نصب پکیج tar.gz antm-0.1.1:

    pip install antm-0.1.1.tar.gz