معرفی شرکت ها


ansys-dpf-core-0.7.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DPF Python client
ویژگی مقدار
سیستم عامل -
نام فایل ansys-dpf-core-0.7.2
نام ansys-dpf-core
نسخه کتابخانه 0.7.2
نگهدارنده []
ایمیل نگهدارنده ['pyansys.maintainers@ansys.com']
نویسنده ANSYS
ایمیل نویسنده ramdane.lagha@ansys.com
آدرس صفحه اصلی https://github.com/pyansys/pydpf-core
آدرس اینترنتی https://pypi.org/project/ansys-dpf-core/
مجوز MIT License
# DPF - Ansys Data Processing Framework [![PyAnsys](https://img.shields.io/badge/Py-Ansys-ffc107.svg?logo=)](https://docs.pyansys.com/) [![Python](https://img.shields.io/pypi/pyversions/ansys-dpf-core?logo=pypi)](https://pypi.org/project/ansys-dpf-core/) [![pypi](https://img.shields.io/pypi/v/ansys-dpf-core.svg?logo=python&logoColor=white)](https://pypi.org/project/ansys-dpf-core) [![freq-PyDPF-Core](https://img.shields.io/github/commit-activity/m/pyansys/pydpf-core)](https://github.com/pyansys/pydpf-core) [![GH-CI](https://github.com/pyansys/pydpf-core/actions/workflows/ci.yml/badge.svg)](https://github.com/pyansys/pydpf-core/actions/workflows/ci.yml) [![docs](https://img.shields.io/website?down_color=lightgrey&down_message=invalid&label=documentation&up_color=brightgreen&up_message=up&url=https%3A%2F%2Fdpfdocs.pyansys.com%2F)](https://dpfdocs.pyansys.com) [![MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![pypidl](https://img.shields.io/pypi/dm/ansys-dpf-core.svg?label=PyPI%20downloads)](https://pypi.org/project/ansys-dpf-core/) [![cov](https://codecov.io/gh/pyansys/pydpf-core/branch/master/graph/badge.svg)](https://codecov.io/gh/pyansys/pydpf-core) [![codacy](https://app.codacy.com/project/badge/Grade/61b6a519aea64715ad1726b3955fcf98)](https://www.codacy.com/gh/pyansys/pydpf-core/dashboard?utm_source=github.com&utm_medium=referral&utm_content=pyansys/pydpf-core&utm_campaign=Badge_Grade) The Data Processing Framework (DPF) is designed to provide numerical simulation users/engineers with a toolbox for accessing and transforming simulation data. DPF can access data from solver result files as well as several neutral formats (csv, hdf5, vtk, etc.). Various operators are available allowing the manipulation and the transformation of this data. DPF is a workflow-based framework which allows simple and/or complex evaluations by chaining operators. The data in DPF is defined based on physics agnostic mathematical quantities described in a self-sufficient entity called field. This allows DPF to be a modular and easy to use tool with a large range of capabilities. It's a product designed to handle large amount of data. The Python ``ansys.dpf.core`` module provides a Python interface to the powerful DPF framework enabling rapid post-processing of a variety of Ansys file formats and physics solutions without ever leaving a Python environment. ## Documentation Visit the [DPF-Core Documentation](https://dpfdocs.pyansys.com) for a detailed description of the library, or see the [Examples Gallery](https://dpfdocs.pyansys.com/examples/index.html) for more detailed examples. ## Installation DPF requires an Ansys installation and must be compatible with it. Compatibility between PyDPF-Core and Ansys is documented [here](https://dpfdocs.pyansys.com/getting_started/index.html#compatibility). Starting with Ansys 2021R2, install this package with: ``` pip install ansys-dpf-core ``` For use with Ansys 2021R1, install this package with: ``` pip install ansys-dpf-core==0.2.1 ``` You can also clone and install this repository with: ``` git clone https://github.com/pyansys/pydpf-core cd pydpf-core pip install -e . ``` ## Running DPF See the example scripts in the examples folder for some basic example. More will be added later. ### Brief Demo Provided you have ANSYS 2021R1 or higher installed, a DPF server will start automatically once you start using DPF. To open a result file and explore what's inside, do: ```py >>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> model = dpf.Model(examples.find_simple_bar()) >>> print(model) DPF Model ------------------------------ Static analysis Unit system: Metric (m, kg, N, s, V, A) Physics Type: Mechanical Available results: - displacement: Nodal Displacement - element_nodal_forces: ElementalNodal Element nodal Forces - elemental_volume: Elemental Volume - stiffness_matrix_energy: Elemental Energy-stiffness matrix - artificial_hourglass_energy: Elemental Hourglass Energy - thermal_dissipation_energy: Elemental thermal dissipation energy - kinetic_energy: Elemental Kinetic Energy - co_energy: Elemental co-energy - incremental_energy: Elemental incremental energy - structural_temperature: ElementalNodal Temperature ------------------------------ DPF Meshed Region: 3751 nodes 3000 elements Unit: m With solid (3D) elements ------------------------------ DPF Time/Freq Support: Number of sets: 1 Cumulative Time (s) LoadStep Substep 1 1.000000 1 1 ``` Read a result with: ```py >>> result = model.results.displacement.eval() ``` Then start connecting operators with: ```py >>> from ansys.dpf.core import operators as ops >>> norm = ops.math.norm(model.results.displacement()) ``` ### Starting the Service The `ansys.dpf.core` automatically starts a local instance of the DPF service in the background and connects to it. If you need to connect to an existing remote or local DPF instance, use the ``connect_to_server`` function: ```py >>> from ansys.dpf import core as dpf >>> dpf.connect_to_server(ip='10.0.0.22', port=50054) ``` Once connected, this connection will remain for the duration of the module until you exit python or connect to a different server.


نیازمندی

مقدار نام
- packaging
- psutil
- tqdm
<1.24 numpy
>=0.3.* ansys-dpf-gate
>=0.32.0 pyvista
>=3.2 matplotlib


زبان مورد نیاز

مقدار نام
>=3.7.*,<4.0 Python


نحوه نصب


نصب پکیج whl ansys-dpf-core-0.7.2:

    pip install ansys-dpf-core-0.7.2.whl


نصب پکیج tar.gz ansys-dpf-core-0.7.2:

    pip install ansys-dpf-core-0.7.2.tar.gz