معرفی شرکت ها


answer-0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل answer-0.1
نام answer
نسخه کتابخانه 0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rodrigo Bresan
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/bresan/digipathos_plant_pathology
آدرس اینترنتی https://pypi.org/project/answer/
مجوز BSD-3-Clause
<img width=75% src="docs/figs/logo.png"> [![PyPI version](https://badge.fury.io/py/digipathos.svg)](https://pypi.org/project/digipathos) [![Build Status](https://travis-ci.org/bresan/digipathos_plant_pathology.svg?branch=master)](https://travis-ci.org/bresan/digipathos_plant_pathology) [![codecov](https://codecov.io/gh/bresan/digipathos_plant_pathology/branch/master/graph/badge.svg)](https://codecov.io/gh/bresan/digipathos_plant_pathology) [![GitHub](https://img.shields.io/github/license/bresan/digipathos_plant_pathology.svg)](https://github.com/bresan/digipathos_plant_pathology/blob/master/LICENSE.md) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/e02bc243822c4ce884c4adf87ff6e9f7)](https://www.codacy.com/app/bresan/digipathos_plant_pathology?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=bresan/digipathos_plant_pathology&amp;utm_campaign=Badge_Grade) # Overview This project is aimed to serve as a wrapper for the Digipathos dataset, in order to list and download public data from plant pathologies provided by Embrapa (Brazilian Agricultural Research Corporation). Example of pictures: <img width=33% src="docs/figs/fig.png"> <img width=33% src="docs/figs/fig2.png"> <img width=33% src="docs/figs/fig3.png"> # Installation The installation is pretty simple if you have a virtualenv already installed on your machine. If you don't please rely to [VirtualEnv official documentation](https://virtualenv.pypa.io/en/latest/). ```bash pip install digipathos ``` # Documentation Besides the docstrings, major details about the documentation can be found [here](https://digipathos.readthedocs.io/en/latest/). # Testing This project is inteded to suit most of the existent needs, so for this reason, testability is a major concern. Most of the code is heavily tested, along with [Travis](https://travis-ci.org/bresan/digipathos_plant_pathology) as Continuous Integration tool to run all the unit tests once there is a new commit. # Usage You can use Digipathos in two different ways: via terminal or programatically. ## CLI (Command-Line Interface) This mode is highly recommended for those who are looking to explore a little bit the dataset. Here you can do the same operations from the programmatic mode, but with the advantage of being able to see all the data that is being retrieved. ```bash digipathos ``` And then you're gonna be greeted by our dataset browser :-) <p align="center"><img width=75% src="docs/figs/browser.png"></p> An example listing all the datasets: <p align="center"><img width=75% src="docs/figs/datasets.png"></p> ## Programmatically ```python data_loader = DataLoader() # list all the datasets datasets = data_loader.get_datasets() # now lets give a look at the crops crops = data_loader.get_crops() # how about getting all the datasets from a crop? datasets_from_crop = data_loader.get_datasets_from_crop('Pineapple') # now let's download a random dataset dataset_id = random.choice(list(datasets.keys())) data_loader.download_dataset(dataset_id=dataset_id) # download all from a given crop data_loader.download_datasets_from_crop('Pineapple') # download all the datasets data_loader.download_all_datasets() ``` Pretty simple, huh? A working example can be found [here as a Python script](https://github.com/bresan/digipathos_plant_pathology/blob/master/example/example.py). # Troubleshooting In case of any issue with the project, or for further questions, do not hesitate to open an issue here on GitHub. # Contributions Contributions are really welcome, so feel free to open a pull request :-)


نیازمندی

مقدار نام
==1.3.0 atomicwrites
==19.1.0 attrs
==2019.3.9 certifi
==3.0.4 chardet
==2.0.15 codecov
==4.5.3 coverage
==2.8 idna
==6.0.0 more-itertools
==0.670 mypy
==0.4.1 mypy-extensions
==0.9.0 pluggy
==1.8.0 py
==4.3.1 pytest
==2.6.1 pytest-cov
==2.21.0 requests
==1.12.0 six
==3.1.0 terminaltables
==1.3.1 typed-ast
==1.24.1 urllib3


نحوه نصب


نصب پکیج whl answer-0.1:

    pip install answer-0.1.whl


نصب پکیج tar.gz answer-0.1:

    pip install answer-0.1.tar.gz