معرفی شرکت ها


anomalib-0.4.0rc2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

anomalib - Anomaly Detection Library
ویژگی مقدار
سیستم عامل -
نام فایل anomalib-0.4.0rc2
نام anomalib
نسخه کتابخانه 0.4.0rc2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Intel OpenVINO
ایمیل نویسنده help@openvino.intel.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/anomalib/
مجوز Copyright (c) Intel - All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License")See LICENSE file for more details.
<div align="center"> <img src="docs/source/images/logos/anomalib-wide-blue.png" width="600px"> **A library for benchmarking, developing and deploying deep learning anomaly detection algorithms** --- [Key Features](#key-features) • [Getting Started](#getting-started) • [Docs](https://openvinotoolkit.github.io/anomalib) • [License](https://github.com/openvinotoolkit/anomalib/blob/main/LICENSE) [![python](https://img.shields.io/badge/python-3.7%2B-green)]() [![pytorch](https://img.shields.io/badge/pytorch-1.8.1%2B-orange)]() [![openvino](https://img.shields.io/badge/openvino-2021.4.2-purple)]() [![comet](https://custom-icon-badges.herokuapp.com/badge/comet__ml-3.31.7-orange?logo=logo_comet_ml)](https://www.comet.com/site/products/ml-experiment-tracking/?utm_source=anomalib&utm_medium=referral) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/684927c1c76c4c5e94bb53480812fbbb)](https://www.codacy.com/gh/openvinotoolkit/anomalib/dashboard?utm_source=github.com&utm_medium=referral&utm_content=openvinotoolkit/anomalib&utm_campaign=Badge_Grade) [![black](https://img.shields.io/badge/code%20style-black-000000.svg)]() [![Nightly-Regression Test](https://github.com/openvinotoolkit/anomalib/actions/workflows/nightly.yml/badge.svg)](https://github.com/openvinotoolkit/anomalib/actions/workflows/nightly.yml) [![Pre-Merge Checks](https://github.com/openvinotoolkit/anomalib/actions/workflows/pre_merge.yml/badge.svg)](https://github.com/openvinotoolkit/anomalib/actions/workflows/pre_merge.yml) [![Codacy Badge](https://app.codacy.com/project/badge/Coverage/684927c1c76c4c5e94bb53480812fbbb)](https://www.codacy.com/gh/openvinotoolkit/anomalib/dashboard?utm_source=github.com&utm_medium=referral&utm_content=openvinotoolkit/anomalib&utm_campaign=Badge_Coverage) [![Docs](https://github.com/openvinotoolkit/anomalib/actions/workflows/docs.yml/badge.svg)](https://github.com/openvinotoolkit/anomalib/actions/workflows/docs.yml) [![Downloads](https://static.pepy.tech/personalized-badge/anomalib?period=total&units=international_system&left_color=grey&right_color=green&left_text=PyPI%20Downloads)](https://pepy.tech/project/anomalib) </div> --- # Introduction Anomalib is a deep learning library that aims to collect state-of-the-art anomaly detection algorithms for benchmarking on both public and private datasets. Anomalib provides several ready-to-use implementations of anomaly detection algorithms described in the recent literature, as well as a set of tools that facilitate the development and implementation of custom models. The library has a strong focus on image-based anomaly detection, where the goal of the algorithm is to identify anomalous images, or anomalous pixel regions within images in a dataset. Anomalib is constantly updated with new algorithms and training/inference extensions, so keep checking! ![Sample Image](./docs/source/images/readme.png) **Key features:** - The largest public collection of ready-to-use deep learning anomaly detection algorithms and benchmark datasets. - [**PyTorch Lightning**](https://www.pytorchlightning.ai/) based model implementations to reduce boilerplate code and limit the implementation efforts to the bare essentials. - All models can be exported to [**OpenVINO**](https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html) Intermediate Representation (IR) for accelerated inference on intel hardware. - A set of [inference tools](#inference) for quick and easy deployment of the standard or custom anomaly detection models. --- # Getting Started To get an overview of all the devices where `anomalib` as been tested thoroughly, look at the [Supported Hardware](https://openvinotoolkit.github.io/anomalib/#supported-hardware) section in the documentation. ## Jupyter Notebooks For getting started with a Jupyter Notebook, please refer to the [Notebooks](./notebooks) folder of this repository. Additionally, you can refer to a few created by the community: <a href="https://colab.research.google.com/drive/1K4a4z2iZGBNhWdmt9Aqdld7kTAxBfAmi?usp=sharing" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> by [@bth5](https://github.com/bth5) <a target="_blank" href="https://www.kaggle.com/code/ipythonx/mvtec-ad-anomaly-detection-with-anomalib-library"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" /></a> by [@innat](https://github.com/innat) ## PyPI Install You can get started with `anomalib` by just using pip. ```bash pip install anomalib ``` ## Local Install It is highly recommended to use virtual environment when installing anomalib. For instance, with [anaconda](https://www.anaconda.com/products/individual), `anomalib` could be installed as, ```bash yes | conda create -n anomalib_env python=3.8 conda activate anomalib_env git clone https://github.com/openvinotoolkit/anomalib.git cd anomalib pip install -e . ``` # Training ## ⚠️ Anomalib < v.0.4.0 By default [`python tools/train.py`](https://github.com/openvinotoolkit/anomalib/blob/main/tools/train.py) runs [PADIM](https://arxiv.org/abs/2011.08785) model on `leather` category from the [MVTec AD](https://www.mvtec.com/company/research/datasets/mvtec-ad) [(CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) dataset. ```bash python tools/train.py # Train PADIM on MVTec AD leather ``` Training a model on a specific dataset and category requires further configuration. Each model has its own configuration file, [`config.yaml`](https://github.com/openvinotoolkit/anomalib/blob/main/configs/model/padim.yaml) , which contains data, model and training configurable parameters. To train a specific model on a specific dataset and category, the config file is to be provided: ```bash python tools/train.py --config <path/to/model/config.yaml> ``` For example, to train [PADIM](anomalib/models/padim) you can use ```bash python tools/train.py --config anomalib/models/padim/config.yaml ``` Alternatively, a model name could also be provided as an argument, where the scripts automatically finds the corresponding config file. ```bash python tools/train.py --model padim ``` where the currently available models are: - [CFlow](anomalib/models/cflow) - [DFM](anomalib/models/dfm) - [DFKDE](anomalib/models/dfkde) - [FastFlow](anomalib/models/fastflow) - [PatchCore](anomalib/models/patchcore) - [PADIM](anomalib/models/padim) - [STFPM](anomalib/models/stfpm) - [GANomaly](anomalib/models/ganomaly) ## Feature extraction & (pre-trained) backbones The pre-trained backbones come from [PyTorch Image Models (timm)](https://github.com/rwightman/pytorch-image-models), which are wrapped by `FeatureExtractor`. For more information, please check our documentation or the [section about feature extraction in "Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide"](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055#b83b:~:text=ready%20to%20train!-,Feature%20Extraction,-timm%20models%20also>). Tips: - Papers With Code has an interface to easily browse models available in timm: [https://paperswithcode.com/lib/timm](https://paperswithcode.com/lib/timm) - You can also find them with the function `timm.list_models("resnet*", pretrained=True)` The backbone can be set in the config file, two examples below. Anomalib < v.0.4.0 ```yaml model: name: cflow backbone: wide_resnet50_2 pre_trained: true Anomalib > v.0.4.0 Beta - Subject to Change ``` Anomalib >= v.0.4.0 ```yaml model: class_path: anomalib.models.Cflow init_args: backbone: wide_resnet50_2 pre_trained: true ``` ## Custom Dataset It is also possible to train on a custom folder dataset. To do so, `data` section in `config.yaml` is to be modified as follows: ```yaml dataset: name: <name-of-the-dataset> format: folder path: <path/to/folder/dataset> normal_dir: normal # name of the folder containing normal images. abnormal_dir: abnormal # name of the folder containing abnormal images. normal_test_dir: null # name of the folder containing normal test images. task: segmentation # classification or segmentation mask: <path/to/mask/annotations> #optional extensions: null split_ratio: 0.2 # ratio of the normal images that will be used to create a test split image_size: 256 train_batch_size: 32 test_batch_size: 32 num_workers: 8 transform_config: train: null val: null create_validation_set: true tiling: apply: false tile_size: null stride: null remove_border_count: 0 use_random_tiling: False random_tile_count: 16 ``` ## ⚠️ Anomalib > v.0.4.0 Beta - Subject to Change We introduce a new CLI approach that uses [PyTorch Lightning CLI](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_cli.html). To train a model using the new CLI, one would call the following: ```bash anomalib fit --config <path/to/new/config/file> ``` For instance, to train a [PatchCore](https://github.com/openvinotoolkit/anomalib/tree/main/anomalib/models/patchcore) model, the following command would be run: ```bash anomalib fit --config ./configs/model/patchcore.yaml ``` The new CLI approach offers a lot more flexibility, details of which are explained in the [documentation](https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_cli.html). # Inference ## ⚠️ Anomalib < v.0.4.0 Anomalib includes multiple tools, including Lightning, Gradio, and OpenVINO inferencers, for performing inference with a trained model. The following command can be used to run PyTorch Lightning inference from the command line: ```bash python tools/inference/lightning_inference.py -h ``` As a quick example: ```bash python tools/inference/lightning_inference.py \ --config anomalib/models/padim/config.yaml \ --weights results/padim/mvtec/bottle/weights/model.ckpt \ --input datasets/MVTec/bottle/test/broken_large/000.png \ --output results/padim/mvtec/bottle/images ``` Example OpenVINO Inference: ```bash python tools/inference/openvino_inference.py \ --config anomalib/models/padim/config.yaml \ --weights results/padim/mvtec/bottle/openvino/openvino_model.bin \ --meta_data results/padim/mvtec/bottle/openvino/meta_data.json \ --input datasets/MVTec/bottle/test/broken_large/000.png \ --output results/padim/mvtec/bottle/images ``` > Ensure that you provide path to `meta_data.json` if you want the normalization to be applied correctly. You can also use Gradio Inference to interact with the trained models using a UI. Refer to our [guide](https://openvinotoolkit.github.io/anomalib/guides/inference.html#gradio-inference) for more details. A quick example: ```bash python tools/inference/gradio_inference.py \ --config ./anomalib/models/padim/config.yaml \ --weights ./results/padim/mvtec/bottle/weights/model.ckpt ``` ## Exporting Model to ONNX or OpenVINO IR It is possible to export your model to ONNX or OpenVINO IR If you want to export your PyTorch model to an OpenVINO model, ensure that `export_mode` is set to `"openvino"` in the respective model `config.yaml`. ```yaml optimization: export_mode: "openvino" # options: openvino, onnx ``` # Hyperparameter Optimization To run hyperparameter optimization, use the following command: ```bash python tools/hpo/sweep.py \ --model padim --model_config ./path_to_config.yaml \ --sweep_config tools/hpo/sweep.yaml ``` For more details refer the [HPO Documentation](https://openvinotoolkit.github.io/anomalib/guides/hyperparameter_optimization.html) # Benchmarking To gather benchmarking data such as throughput across categories, use the following command: ```bash python tools/benchmarking/benchmark.py \ --config <relative/absolute path>/<paramfile>.yaml ``` Refer to the [Benchmarking Documentation](https://openvinotoolkit.github.io/anomalib/guides/benchmarking.html) for more details. # Experiment Management Anomablib is integrated with various libraries for experiment tracking such as Comet, tensorboard, and wandb through [pytorch lighting loggers](https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html). Below is an example of how to enable logging for hyper-parameters, metrics, model graphs, and predictions on images in the test data-set ```yaml visualization: log_images: True # log images to the available loggers (if any) mode: full # options: ["full", "simple"] logging: logger: [comet, tensorboard, wandb] log_graph: True ``` For more information, refer to the [Logging Documentation](https://openvinotoolkit.github.io/anomalib/guides/logging.html) Note: Set your API Key for [Comet.ml](https://www.comet.com/signup?utm_source=anomalib&utm_medium=referral) via `comet_ml.init()` in interactive python or simply run `export COMET_API_KEY=<Your API Key>` # Datasets `anomalib` supports MVTec AD [(CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) and BeanTech [(CC-BY-SA)](https://creativecommons.org/licenses/by-sa/4.0/legalcode) for benchmarking and `folder` for custom dataset training/inference. ## [MVTec AD Dataset](https://www.mvtec.com/company/research/datasets/mvtec-ad) MVTec AD dataset is one of the main benchmarks for anomaly detection, and is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License [(CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). ## Image-Level AUC | Model | | Avg | Carpet | Grid | Leather | Tile | Wood | Bottle | Cable | Capsule | Hazelnut | Metal Nut | Pill | Screw | Toothbrush | Transistor | Zipper | | ------------- | ------------------ | :-------: | :-------: | :-------: | :-----: | :-------: | :-------: | :-----: | :-------: | :-------: | :------: | :-------: | :-------: | :-------: | :--------: | :--------: | :-------: | | **PatchCore** | **Wide ResNet-50** | **0.980** | 0.984 | 0.959 | 1.000 | **1.000** | 0.989 | 1.000 | **0.990** | **0.982** | 1.000 | 0.994 | 0.924 | 0.960 | 0.933 | **1.000** | 0.982 | | PatchCore | ResNet-18 | 0.973 | 0.970 | 0.947 | 1.000 | 0.997 | 0.997 | 1.000 | 0.986 | 0.965 | 1.000 | 0.991 | 0.916 | **0.943** | 0.931 | 0.996 | 0.953 | | CFlow | Wide ResNet-50 | 0.962 | 0.986 | 0.962 | **1.0** | 0.999 | **0.993** | **1.0** | 0.893 | 0.945 | **1.0** | **0.995** | 0.924 | 0.908 | 0.897 | 0.943 | **0.984** | | PaDiM | Wide ResNet-50 | 0.950 | **0.995** | 0.942 | 1.0 | 0.974 | **0.993** | 0.999 | 0.878 | 0.927 | 0.964 | 0.989 | **0.939** | 0.845 | 0.942 | 0.976 | 0.882 | | PaDiM | ResNet-18 | 0.891 | 0.945 | 0.857 | 0.982 | 0.950 | 0.976 | 0.994 | 0.844 | 0.901 | 0.750 | 0.961 | 0.863 | 0.759 | 0.889 | 0.920 | 0.780 | | STFPM | Wide ResNet-50 | 0.876 | 0.957 | 0.977 | 0.981 | 0.976 | 0.939 | 0.987 | 0.878 | 0.732 | 0.995 | 0.973 | 0.652 | 0.825 | 0.5 | 0.875 | 0.899 | | STFPM | ResNet-18 | 0.893 | 0.954 | **0.982** | 0.989 | 0.949 | 0.961 | 0.979 | 0.838 | 0.759 | 0.999 | 0.956 | 0.705 | 0.835 | **0.997** | 0.853 | 0.645 | | DFM | Wide ResNet-50 | 0.891 | 0.978 | 0.540 | 0.979 | 0.977 | 0.974 | 0.990 | 0.891 | 0.931 | 0.947 | 0.839 | 0.809 | 0.700 | 0.911 | 0.915 | 0.981 | | DFM | ResNet-18 | 0.894 | 0.864 | 0.558 | 0.945 | 0.984 | 0.946 | 0.994 | 0.913 | 0.871 | 0.979 | 0.941 | 0.838 | 0.761 | 0.95 | 0.911 | 0.949 | | DFKDE | Wide ResNet-50 | 0.774 | 0.708 | 0.422 | 0.905 | 0.959 | 0.903 | 0.936 | 0.746 | 0.853 | 0.736 | 0.687 | 0.749 | 0.574 | 0.697 | 0.843 | 0.892 | | DFKDE | ResNet-18 | 0.762 | 0.646 | 0.577 | 0.669 | 0.965 | 0.863 | 0.951 | 0.751 | 0.698 | 0.806 | 0.729 | 0.607 | 0.694 | 0.767 | 0.839 | 0.866 | | GANomaly | | 0.421 | 0.203 | 0.404 | 0.413 | 0.408 | 0.744 | 0.251 | 0.457 | 0.682 | 0.537 | 0.270 | 0.472 | 0.231 | 0.372 | 0.440 | 0.434 | ### Pixel-Level AUC | Model | | Avg | Carpet | Grid | Leather | Tile | Wood | Bottle | Cable | Capsule | Hazelnut | Metal Nut | Pill | Screw | Toothbrush | Transistor | Zipper | | ------------- | ------------------ | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :--------: | :--------: | :-------: | | **PatchCore** | **Wide ResNet-50** | **0.980** | 0.988 | 0.968 | 0.991 | 0.961 | 0.934 | 0.984 | **0.988** | **0.988** | 0.987 | **0.989** | 0.980 | **0.989** | 0.988 | **0.981** | 0.983 | | PatchCore | ResNet-18 | 0.976 | 0.986 | 0.955 | 0.990 | 0.943 | 0.933 | 0.981 | 0.984 | 0.986 | 0.986 | 0.986 | 0.974 | 0.991 | 0.988 | 0.974 | 0.983 | | CFlow | Wide ResNet-50 | 0.971 | 0.986 | 0.968 | 0.993 | **0.968** | 0.924 | 0.981 | 0.955 | **0.988** | **0.990** | 0.982 | **0.983** | 0.979 | 0.985 | 0.897 | 0.980 | | PaDiM | Wide ResNet-50 | 0.979 | **0.991** | 0.970 | 0.993 | 0.955 | **0.957** | **0.985** | 0.970 | **0.988** | 0.985 | 0.982 | 0.966 | 0.988 | **0.991** | 0.976 | **0.986** | | PaDiM | ResNet-18 | 0.968 | 0.984 | 0.918 | **0.994** | 0.934 | 0.947 | 0.983 | 0.965 | 0.984 | 0.978 | 0.970 | 0.957 | 0.978 | 0.988 | 0.968 | 0.979 | | STFPM | Wide ResNet-50 | 0.903 | 0.987 | **0.989** | 0.980 | 0.966 | 0.956 | 0.966 | 0.913 | 0.956 | 0.974 | 0.961 | 0.946 | 0.988 | 0.178 | 0.807 | 0.980 | | STFPM | ResNet-18 | 0.951 | 0.986 | 0.988 | 0.991 | 0.946 | 0.949 | 0.971 | 0.898 | 0.962 | 0.981 | 0.942 | 0.878 | 0.983 | 0.983 | 0.838 | 0.972 | ## Image F1 Score | Model | | Avg | Carpet | Grid | Leather | Tile | Wood | Bottle | Cable | Capsule | Hazelnut | Metal Nut | Pill | Screw | Toothbrush | Transistor | Zipper | | ------------- | ------------------ | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :-------: | :--------: | :--------: | :-------: | | **PatchCore** | **Wide ResNet-50** | **0.976** | 0.971 | 0.974 | **1.000** | **1.000** | 0.967 | **1.000** | 0.968 | **0.982** | **1.000** | 0.984 | 0.940 | 0.943 | 0.938 | **1.000** | **0.979** | | PatchCore | ResNet-18 | 0.970 | 0.949 | 0.946 | **1.000** | 0.98 | **0.992** | **1.000** | **0.978** | 0.969 | **1.000** | **0.989** | 0.940 | 0.932 | 0.935 | 0.974 | 0.967 | | CFlow | Wide ResNet-50 | 0.944 | 0.972 | 0.932 | **1.0** | 0.988 | 0.967 | **1.0** | 0.832 | 0.939 | **1.0** | 0.979 | 0.924 | **0.971** | 0.870 | 0.818 | 0.967 | | PaDiM | Wide ResNet-50 | 0.951 | **0.989** | 0.930 | **1.0** | 0.960 | 0.983 | 0.992 | 0.856 | **0.982** | 0.937 | 0.978 | **0.946** | 0.895 | 0.952 | 0.914 | 0.947 | | PaDiM | ResNet-18 | 0.916 | 0.930 | 0.893 | 0.984 | 0.934 | 0.952 | 0.976 | 0.858 | 0.960 | 0.836 | 0.974 | 0.932 | 0.879 | 0.923 | 0.796 | 0.915 | | STFPM | Wide ResNet-50 | 0.926 | 0.973 | 0.973 | 0.974 | 0.965 | 0.929 | 0.976 | 0.853 | 0.920 | 0.972 | 0.974 | 0.922 | 0.884 | 0.833 | 0.815 | 0.931 | | STFPM | ResNet-18 | 0.932 | 0.961 | **0.982** | 0.989 | 0.930 | 0.951 | 0.984 | 0.819 | 0.918 | 0.993 | 0.973 | 0.918 | 0.887 | **0.984** | 0.790 | 0.908 | | DFM | Wide ResNet-50 | 0.918 | 0.960 | 0.844 | 0.990 | 0.970 | 0.959 | 0.976 | 0.848 | 0.944 | 0.913 | 0.912 | 0.919 | 0.859 | 0.893 | 0.815 | 0.961 | | DFM | ResNet-18 | 0.919 | 0.895 | 0.844 | 0.926 | 0.971 | 0.948 | 0.977 | 0.874 | 0.935 | 0.957 | 0.958 | 0.921 | 0.874 | 0.933 | 0.833 | 0.943 | | DFKDE | Wide ResNet-50 | 0.875 | 0.907 | 0.844 | 0.905 | 0.945 | 0.914 | 0.946 | 0.790 | 0.914 | 0.817 | 0.894 | 0.922 | 0.855 | 0.845 | 0.722 | 0.910 | | DFKDE | ResNet-18 | 0.872 | 0.864 | 0.844 | 0.854 | 0.960 | 0.898 | 0.942 | 0.793 | 0.908 | 0.827 | 0.894 | 0.916 | 0.859 | 0.853 | 0.756 | 0.916 | | GANomaly | | 0.834 | 0.864 | 0.844 | 0.852 | 0.836 | 0.863 | 0.863 | 0.760 | 0.905 | 0.777 | 0.894 | 0.916 | 0.853 | 0.833 | 0.571 | 0.881 | # Reference If you use this library and love it, use this to cite it 🤗 ```tex @misc{anomalib, title={Anomalib: A Deep Learning Library for Anomaly Detection}, author={Samet Akcay and Dick Ameln and Ashwin Vaidya and Barath Lakshmanan and Nilesh Ahuja and Utku Genc}, year={2022}, eprint={2202.08341}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```


نیازمندی

مقدار نام
>=1.1.0 albumentations
>=3.31.7 comet-ml
>=0.3.2 einops
>=2.9.4 gradio
==0.4.0 imgaug
>=4.3 jsonargparse[signatures]
>=0.6.6 kornia
>=3.4.3 matplotlib
>=2.1.1 omegaconf
>=4.5.3.56 opencv-python
>=1.1.0 pandas
<1.7.0,>=1.6.0 pytorch-lightning
==0.5.4 timm
<=0.9.3,>=0.9.1 torchmetrics
<=0.13.0,>=0.9.1 torchvision
<=0.13.0,>=0.9.1 torchtext
==0.12.17 wandb
==2022.9.29 furo
- myst-parser
- pandoc
>=4.1.2 sphinx
- sphinx-autoapi
==0.1.8 sphinxemoji
>=0.8.9 nbsphinx
==0.7.1 defusedxml
==2.26.0 requests
~=2.5 networkx
==2.1.0 nncf
==1.10.1 onnx
==2022.1.0 openvino-dev
==0.7.1 defusedxml
==2.26.0 requests
~=2.5 networkx
==2.1.0 nncf
==1.10.1 onnx
==2022.1.0 openvino-dev


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl anomalib-0.4.0rc2:

    pip install anomalib-0.4.0rc2.whl


نصب پکیج tar.gz anomalib-0.4.0rc2:

    pip install anomalib-0.4.0rc2.tar.gz