معرفی شرکت ها


annoPipeline-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

API-enabled Gene Annotation
ویژگی مقدار
سیستم عامل -
نام فایل annoPipeline-0.0.1
نام annoPipeline
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jim Arnold
ایمیل نویسنده jimmyjamesarnold@gmail.com
آدرس صفحه اصلی https://github.com/jimmyjamesarnold/annoPipeline
آدرس اینترنتی https://pypi.org/project/annoPipeline/
مجوز MIT
# annoPipeline - an API-enabled gene annotation pipeline ***annoPipeline*** uses APIs from [mygene.info](http://mygene.info/) and [Entrez esummary](https://dataguide.nlm.nih.gov/eutilities/utilities.html#esummary) to annotate a user-provided list of gene symbols. Generates a pandas DataFrame with gene symbol, gene name, EntrezID, and bibliographic info for up to 5 pubmed publications where a functional reference was provided (more about functional references at [GeneRIF](https://www.ncbi.nlm.nih.gov/gene/about-generif)). Designed to be useful for tasks such as: * identifying relevant publications for a given function * analyzing publications trends for genes belonging to a common pathway * identifying influential PIs for a given gene network. ## Reqirements: * Written for use with Python 3.7, not tested on other versions. * *annoPipeline* requires: - numpy >= 1.16.2 - pandas >= 0.24.2 - Biopython >= 1.73 - openpyxl >= 2.6.1 - requests >= 2.21.0 ## To Install: ``` pip install annoPipeline ``` Or clone the repo from github. Then, in the annoPipeline directory, run: ``` python setup.py install ``` Required dependencies will be installed if missing, may take a few seconds. ## Example usage: Execute the full annotation pipeline on a list of gene symbols like this: ```python import annoPipeline as ap # define a list of genes you would like annotated geneList = ['CDK2', 'FGFR1', 'SLC6A4'] # annoPipeline will execute full annotation pipeline (see individual functions below). df = ap.annoPipeline(geneList) # returns pandas df with annotations for gene and bibliographic info. ``` - ***ap.annoPipeline*** will default save annotation output to Excel file named by geneList symbols separated by '_'. ### Warning! If querying a **single gene**, still pass as a list. For example: ```python import annoPipeline as ap df = ap.annoPipeline(['CDK2']) # for single gene queries still include [] - will be fixed in later version ``` ## v0.0.1 Functionality ### Task 1: 1. From the MyGeneInfo API, use the “Gene query service" GET method to return details on a given list of human gene symbols. 2. From the returned json, parse out the “name", “symbol" and “entrezgene" values and print to screen Use *queryGenes()*: ```python import annoPipeline as ap geneList = ['CDK2', 'FGFR1', 'SLC6A4'] l1 = ap.queryGenes(geneList) # returns list of dicts where keys are default mygene fields (symbol,name,taxid,entrezgene,ensemblgene) ``` ### Task 2: 1. Using the appropriate identifier from the above result, send a query to the MyGeneInfo “Gene annotation services" method for each gene 2. From the resulting json, collate up to 5 generif descriptions per gene 3. Write the results to an Excel spreadsheet with columns: gene_symbol, gene_name, entrez_id, generifs Use *getAnno()*: ```python import annoPipeline as ap geneList = ['CDK2', 'FGFR1', 'SLC6A4'] l1 = ap.queryGenes(geneList) l2 = ap.getAnno(l1, saveExcel=True) # saveExcel defaults False ``` - returns pandas df with genes and up to 5 generifs from mygene.info. - default **saveExcel**=*False*, to save output to Excel must state *True* - if *True*, Excel file will be named by geneList symbols separated by '_'. ### Task 3: 1. Use the Pubmed IDs associated with the above generif content to extract additional bibliographic information. Use *addBibs()*: ```python import annoPipeline as ap geneList = ['CDK2', 'FGFR1', 'SLC6A4'] l1 = ap.queryGenes(geneList) l2 = ap.getAnno(l1) l3 = ap.addBibs(l2) # will return df with genes and up to 5 generifs from mygene.info ``` * Currently returns the following bibliographic information when available: * PubDate * Source * Title * LastAuthor * DOI * PmcRefCount


نیازمندی

مقدار نام
>=1.16.2 numpy
>=0.24.2 pandas
>=1.73 Biopython
>=2.6.1 openpyxl
>=2.21.0 requests


نحوه نصب


نصب پکیج whl annoPipeline-0.0.1:

    pip install annoPipeline-0.0.1.whl


نصب پکیج tar.gz annoPipeline-0.0.1:

    pip install annoPipeline-0.0.1.tar.gz