<br/>
<h1 align="center">Ankh ☥: Optimized Protein Language Model Unlocks General-Purpose Modelling </h1>
<br/>
<br/>
[Ankh](https://github.com/agemagician/Ankh/) is the first general-purpose protein language model trained on Google's **TPU-V4** surpassing the state-of-the-art performance with dramatically less parameters, promoting accessibility to research innovation via attainable resources.
<div align="center"><img width=700 height=500 src="https://github.com/agemagician/Ankh/blob/main/images/logo.jpeg?raw=true"></div>
This repository will be updated regulary with **new pre-trained models for proteins** in part of supporting the **biotech** community in revolutinizing protein engineering using AI.
Table of Contents
=================
* [ Models Availability](#models)
* [ Dataset Availability](#datasets)
* [ Usage](#usage)
* [ Original downstream Predictions](#results)
* [ Followup use-cases](#inaction)
* [ Comparisons to other tools](#comparison)
* [ Community and Contributions](#community)
* [ Have a question?](#question)
* [ Found a bug?](#bug)
* [ Requirements](#requirements)
* [ Sponsors](#sponsors)
* [ Team](#team)
* [ License](#license)
* [ Citation](#citation)
<a name="models"></a>
## Models Availability
| Model | ankh | HuggingFace |
|------------------------------------|-----------------------------------|-----------------------------------------------------------|
| Ankh Large | `ankh.load_large_model()` |[Ankh Large](https://huggingface.co/ElnaggarLab/ankh-large)|
| Ankh Base | `ankh.load_base_model()` |[Ankh Base](https://huggingface.co/ElnaggarLab/ankh-base) |
<a name="datasets"></a>
## Datasets Availability
| Dataset | HuggingFace |
| ----------------------------- |---------------------------------------------------------------------------------------------------|
| Remote Homology | `load_dataset("proteinea/remote_homology")` |
| CASP12 | `load_dataset("proteinea/secondary_structure_prediction", data_files={'test': ['CASP12.csv']})`|
| CASP14 | `load_dataset("proteinea/secondary_structure_prediction", data_files={'test': ['CASP14.csv']})`|
| CB513 | `load_dataset("proteinea/secondary_structure_prediction", data_files={'test': ['CB513.csv']})` |
| TS115 | `load_dataset("proteinea/secondary_structure_prediction", data_files={'test': ['TS115.csv']})` |
| DeepLoc | `load_dataset("proteinea/deeploc")` |
| Fluorosence | `load_dataset("proteinea/flourosence")` |
| Solubility | `load_dataset("proteinea/solubility")` |
| Nearest Neighbor Search | `load_dataset("proteinea/nearest_neighbor_search")` |
<a name="usage"></a>
## Usage
* Loading pre-trained models:
```python
import ankh
# To load large model:
model, tokenizer = ankh.load_large_model()
model.eval()
# To load base model.
model, tokenizer = ankh.load_base_model()
model.eval()
```
* Feature extraction using ankh large example:
```python
model, tokenizer = ankh.load_large_model()
model.eval()
protein_sequences = ['MKALCLLLLPVLGLLVSSKTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDLATCPRGFAVTGCTCGSACGSWDVRAETTCHCQCAGMDWTGARCCRVQPLEHHHHHH',
'GSHMSLFDFFKNKGSAATATDRLKLILAKERTLNLPYMEEMRKEIIAVIQKYTKSSDIHFKTLDSNQSVETIEVEIILPR']
protein_sequences = [list(seq) for seq in protein_sequences]
ids = tokenizer.batch_encode_plus(protein_sequences,
add_special_tokens=True,
padding=True,
is_split_into_words=True,
return_tensors="pt")['input_ids']
with torch.no_grad():
embeddings = model(input_ids=ids)
```
* Loading downstream models example:
```python
# To use downstream model for binary classification:
binary_classification_model = ankh.ConvBertForBinaryClassification(input_dim=768,
nhead=4,
hidden_dim=384,
num_hidden_layers=1,
num_layers=1,
kernel_size=7,
dropout=0.2,
pooling='max')
# To use downstream model for multiclass classification:
multiclass_classification_model = ankh.ConvBertForMultiClassClassification(num_tokens=2,
input_dim=768,
nhead=4,
hidden_dim=384,
num_hidden_layers=1,
num_layers=1,
kernel_size=7,
dropout=0.2)
# To use downstream model for regression:
# training_labels_mean is optional parameter and it's used to fill the output layer's bias with it,
# it's useful for faster convergence.
regression_model = ankh.ConvBertForRegression(input_dim=768,
nhead=4,
hidden_dim=384,
num_hidden_layers=1,
num_layers=1,
kernel_size=7,
dropout=0,
pooling='max',
training_labels_mean=0.38145)
```
<a name="results"></a>
## Original downstream Predictions
<a name="q3"></a>
* <b> Secondary Structure Prediction (Q3):</b><br/>
| Model | CASP12 | CASP14 (HARD) | TS115 | CB513 |
|--------------------------|:----------------:|:-------------:|:-------------:|:------------:|
|**Ankh Large** | 83.59% | 77.48% | 88.22% | 88.48% |
|Ankh Base | 80.81% | 76.67% | 86.92% | 86.94% |
|ProtT5-XL-UniRef50 | 83.34% | 75.09% | 86.82% | 86.64% |
|ESM2-15B | 83.16% | 76.56% | 87.50% | 87.35% |
|ESM2-3B | 83.14% | 76.75% | 87.50% | 87.44% |
|ESM2-650M | 82.43% | 76.97% | 87.22% | 87.18% |
|ESM-1b | 79.45% | 75.39% | 85.02% | 84.31% |
<a name="q8"></a>
* <b> Secondary Structure Prediction (Q8):</b><br/>
| Model | CASP12 | CASP14 (HARD) | TS115 | CB513 |
|--------------------------|:----------------:|:-------------:|:-------------:|:------------:|
|**Ankh Large** | 71.69% | 63.17% | 79.10% | 78.45% |
|Ankh Base | 68.85% | 62.33% | 77.08% | 75.83% |
|ProtT5-XL-UniRef50 | 70.47% | 59.71% | 76.91% | 74.81% |
|ESM2-15B | 71.17% | 61.81% | 77.67% | 75.88% |
|ESM2-3B | 71.69% | 61.52% | 77.62% | 75.95% |
|ESM2-650M | 70.50% | 62.10% | 77.68% | 75.89% |
|ESM-1b | 66.02% | 60.34% | 73.82% | 71.55% |
<a name="CP"></a>
* <b> Contact Prediction Long Precision Using Embeddings:</b><br/>
| Model | ProteinNet (L/1) | ProteinNet (L/5) | CASP14 (L/1) | CASP14 (L/5) |
|--------------------------|:----------------:|:----------------:|:-------------:|:------------:|
|**Ankh Large** | 48.93% | 73.49% | 16.01% | 29.91% |
|Ankh Base | 43.21% | 66.63% | 13.50% | 28.65% |
|ProtT5-XL-UniRef50 | 44.74% | 68.95% | 11.95% | 24.45% |
|ESM2-15B | 31.62% | 52.97% | 14.44% | 26.61% |
|ESM2-3B | 30.24% | 51.34% | 12.20% | 21.91% |
|ESM2-650M | 29.36% | 50.74% | 13.71% | 22.25% |
|ESM-1b | 29.25% | 50.69% | 10.18% | 18.08% |
<a name="CP"></a>
* <b> Contact Prediction Long Precision Using attention scores:</b><br/>
| Model | ProteinNet (L/1) | ProteinNet (L/5) | CASP14 (L/1) | CASP14 (L/5) |
|--------------------------|:----------------:|:----------------:|:-------------:|:------------:|
|**Ankh Large** | 31.44% | 55.58% | 11.05% | 20.74% |
|Ankh Base | 25.93% | 46.28% | 9.32% | 19.51% |
|ProtT5-XL-UniRef50 | 30.85% | 51.90% | 8.60% | 16.09% |
|ESM2-15B | 33.32% | 57.44% | 12.25% | 24.60% |
|ESM2-3B | 33.92% | 56.63% | 12.17% | 21.36% |
|ESM2-650M | 31.87% | 54.63% | 10.66% | 21.01% |
|ESM-1b | 25.30% | 42.03% | 7.77% | 15.77% |
<a name="Loc"></a>
* <b> Localization (Q10):</b><br/>
| Model | DeepLoc Dataset |
|--------------------------|:----------------:|
|**Ankh Large** | 83.01% |
|Ankh Base | 81.38% |
|ProtT5-XL-UniRef50 | 82.95% |
|ESM2-15B | 81.22% |
|ESM2-3B | 81.22% |
|ESM2-650M | 82.08% |
|ESM-1b | 80.51% |
<a name="RH"></a>
* <b> Remote Homology:</b><br/>
| Model | SCOPe (Fold) |
|--------------------------|:----------------:|
|Ankh Large | 61.01% |
|**Ankh Base** | 61.14% |
|ProtT5-XL-UniRef50 | 59.38% |
|ESM2-15B | 54.48% |
|ESM2-3B | 59.24% |
|ESM2-650M | 51.36% |
|ESM-1b | 56.93% |
<a name="Sol"></a>
* <b> Solubility:</b><br/>
| Model | Solubility |
|--------------------------|:----------------:|
|**Ankh Large** | 76.41% |
|Ankh Base | 76.36% |
|ProtT5-XL-UniRef50 | 76.26% |
|ESM2-15B | 60.52% |
|ESM2-3B | 74.91% |
|ESM2-650M | 74.56% |
|ESM-1b | 74.91% |
<a name="Flu"></a>
* <b> Fluorosence (Spearman Correlation):</b><br/>
| Model | Fluorosence |
|--------------------------|:----------------:|
|**Ankh Large** | 0.62 |
|Ankh Base | 0.62 |
|ProtT5-XL-UniRef50 | 0.61 |
|ESM2-15B | 0.56 |
|ESM-1b | 0.48 |
|ESM2-650M | 0.48 |
|ESM2-3B | 0.46 |
<a name="CATH"></a>
* <b> Nearest Neighbor Search using Global Pooling:</b><br/>
| Model | Lookup69K (C) | Lookup69K (A) | Lookup69K (T) | Lookup69K (H) |
|--------------------------|:----------------:|:----------------:|:----------------:|:----------------:|
|Ankh Large | 0.83 | 0.72 | 0.60 | 0.70 |
|**Ankh Base** | 0.85 | 0.77 | 0.63 | 0.72 |
|ProtT5-XL-UniRef50 | 0.83 | 0.69 | 0.57 | 0.73 |
|ESM2-15B | 0.78 | 0.63 | 0.52 | 0.67 |
|ESM2-3B | 0.79 | 0.65 | 0.53 | 0.64 |
|ESM2-650M | 0.72 | 0.56 | 0.40 | 0.53 |
|ESM-1b | 0.78 | 0.65 | 0.51 | 0.63 |
<a name="team"></a>
## Team
* <b>Technical University of Munich:</b><br/>
| [Ahmed Elnaggar](https://github.com/agemagician) | Burkhard Rost |
|:------------------------------------------------:|:-------------------------:|
| <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/AhmedElNaggar.jpg?raw=true"> | <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/Rost.jpg?raw=true"> |
* <b>Proteinea:</b><br/>
| [Hazem Essam](https://github.com/hazemessamm) | [Wafaa Ashraf](https://github.com/wafaaashraf) | [Walid Moustafa](https://github.com/wmustafaawad) | [Mohamed Elkerdawy](https://github.com/melkerdawy) |
|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|
| <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/HazemEssam.jpeg?raw=true"> | <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/WafaaAshraf.jpeg?raw=true"> | <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/WalidMoustafa.jpg?raw=true"> | <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/MohamedElKerdawy.jpeg?raw=true"> |
* <b>University of Columbia:</b><br/>
| [Charlotte Rochereau](https://github.com/crochereau) |
|:----------------------------------------------------:|
| <img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/CharlotteRochereau.jpg?raw=true"> |
<a name="sponsors"></a>
## Sponsors
| Google Cloud |
:------------------------------------------------------------------------------------------------------------------------:|
<img width=120 src="https://github.com/agemagician/Ankh/blob/main/images/google_cloud_logo.jpg?raw=true"> |
<a name="license"></a>
## License
Ankh pretrained models are released under the under terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](https://creativecommons.org/licenses/by/4.0/).
<a name="community"></a>
## Community and Contributions
The Ankh project is a **open source project** supported by various partner companies and research institutions. We are committed to **share all our pre-trained models and knowledge**. We are more than happy if you could help us on sharing new ptrained models, fixing bugs, proposing new feature, improving our documentation, spreading the word, or support our project.
<a name="question"></a>
## Have a question?
We are happy to hear your question in our issues page [Ankh](https://github.com/agemagician/Ankh/issues)! Obviously if you have a private question or want to cooperate with us, you can always **reach out to us directly** via [Hello](mailto:hello@proteinea.com?subject=[GitHub]Ankh).
<a name="bug"></a>
## Found a bug?
Feel free to **file a new issue** with a respective title and description on the the [Ankh](https://github.com/agemagician/Ankh/issues) repository. If you already found a solution to your problem, **we would love to review your pull request**!.