معرفی شرکت ها


angorapy-0.8.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ANthropomorphic Goal-ORiented Modeling, Learning and Analysis for Neuroscience
ویژگی مقدار
سیستم عامل -
نام فایل angorapy-0.8.1
نام angorapy
نسخه کتابخانه 0.8.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tonio Weidler
ایمیل نویسنده research@tonioweidler.de
آدرس صفحه اصلی https://github.com/ccnmaastricht/dexterous-robot-hand
آدرس اینترنتی https://pypi.org/project/angorapy/
مجوز GPL-3.0
![](https://img.shields.io/pypi/pyversions/angorapy) ![](https://img.shields.io/pypi/v/angorapy) ![](https://img.shields.io/github/license/ccnmaastricht/angorapy) ![](https://img.shields.io/github/stars/ccnmaastricht/angorapy) <br /> <br /> <p align="center"><img src="docs/img/angorapy.svg" width=25% align="center" /></p> <h3> <p align="center"> Anthropomorphic Goal-Oriented Robotic Control for Neuroscientific Modeling </p> </h3> <br /> **AngoraPy** is an open source modeling library for [goal-oriented research](https://pubmed.ncbi.nlm.nih.gov/26906502/) in **neuroscience**. It provides a simple interface to train deep neural network models of the human brain on various, customizable, sensorimotor tasks, using reinforcement learning. It thereby empowers goal-driven modeling to surpass the sensory domain and enter that of sensori_motor_ control, closing the perception-action loop. **AngoraPy** is designed to require no deeper understanding of reinforcement learning. It employs state-of-the-art machine learning techniques, optimized for distributed computation scaling from local workstations to high-performance computing clusters. We aim to hide as much of this under the hood of an intuitive, high-level API but preserve the option for customizing most aspects of the pipeline. This library is developed as part of the [Human Brain Project](https://www.humanbrainproject.eu/) at [CCN Maastricht](https://www.ccnmaastricht.com/). It is an effort to build software by neuroscientists, for neuroscientists. If you have suggestions, requests or questions, feel free to [open an issue](https://github.com/ccnmaastricht/angorapy/issues/new/choose). ![Manipulation Gif](docs/gifs/manipulate_best.gif) ## 📥 Installation AngoraPy is available on PyPI. ```bash pip install angorapy ``` ### MuJoCo To train on any MuJoCo-based environment, you will need MuJoCo. As of late 2021, MuJoCo is free and can be [downloaded here](https://mujoco.org/download). As an interface to python, we use mujoco-py, [available here](https://github.com/openai/mujoco-py). To install both, follow their respective instructions. If you do not want/can install MuJoCo and/or mujoco-py you can use this framework without MuJoCo. Our implementation automatically checks for a `.mujoco` directory in you home directory. If it does not exist, it will try to avoid loading MuJoCo. However, you can then not load any environments that rely on MuJoCo! ## 🚀 Getting Started The scripts `train.py`, `evaluate.py` and `observe.py` provide ready-made scripts for training and evaluating an agent in any environment. With `pretrain.py`, it is possible to pretrain the visual component. `benchmark.py` provides functionality for training a batch of agents possibly using different configs for comparison of strategies. ### Training an Agent The `train.py` commandline interface provides a convenient entry-point for running all sorts of experiments using the builtin models and environments in angorapy. You can train an agent on any environment with optional hyperparameters. Additionally, a monitor will be automatically linked to the training of the agent. For more detail consult the <a href="monitor/README.md">README on monitoring</a>. Base usage of `train.py` is as follows: python train.py ENV --architecture MODEL For instance, training `LunarLanderContinuous-v2` using the `deeper` architecture is possible by running: python train.py LunarLanderContinuous-v2 --architecture deeper For more advanced options like custom hyperparameters, consult python train.py -h ### Evaluating and Observing an Agent There are two more entry points for evaluating and observing an agent: `evaluate.py` and `observe.py`. General usage is as follows python evaluate.py ID Where ID is the agent's ID given when its created (`train.py` prints this outt, in custom scripts get it with `agent.agent_id`). ### Writing a Training Script To train agents with custom models, environments, etc. you write your own script. The following is a minimal example: ```python from angorapy.common.wrappers import make_env from angorapy.models import get_model_builder from angorapy.agent.ppo_agent import PPOAgent env = make_env("LunarLanderContinuous-v2") model_builder = get_model_builder("simple", "ffn") agent = PPOAgent(model_builder, env) agent.drill(100, 10, 512) ``` For more details, consult the [examples](examples). ## 🎓 Documentation Detailed documentation of AngoraPy is provided in the READMEs of most subpackages. Additionally, we provide [examples and tutorials](examples) that get you started with writing your own scripts using AngoraPy. For further readings on specific modules, consult the following READMEs: - [Agent](angorapy/agent) [WIP] - [Environments](angorapy/environments) - [Models](angorapy/models) - [Analysis](angorapy/analysis) - [Monitoring](angorapy/monitoring) If you are missing a documentation for a specific part of AngoraPy, feel free to open an issue and we will do our best to add it. ## 🔀 Distributed Computation PPO is an asynchronous algorithm, allowing multiple parallel workers to generate experience independently. We allow parallel gathering and optimization through MPI. Agents will automatically distribute their workers evenly on the available CPU cores, while optimization is distributed over all available GPUs. If no GPUs are available, all CPUs share the task of optimizing. Distribution is possible locally on your workstation and on HPC sites. ### 💻 Local Distributed Computing with MPI To use MPI locally, you need to have a running MPI implementation, e.g. Open MPI 4 on Ubuntu. To execute `train.py` via MPI, run ```bash mpirun -np 12 --use-hwthread-cpus python3 train.py ... ``` where, in this example, 12 is the number of locally available CPU threads and `--use-hwthread-cpus` makes available threads (as opposed to only cores). Usage of `train.py` is as described previously. ### :cloud: Distributed Training on SLURM-based HPC clusters *Please note that the following is optimized and tested on the specific cluster we use, but should extend to at least any SLURM based setup.* On any SLURM-based HPC cluster you may submit your job with sbatch usising the following script template: ```bash #!/bin/bash -l #SBATCH --job-name="angorapy" #SBATCH --account=xxx #SBATCH --time=24:00:00 #SBATCH --nodes=32 #SBATCH --ntasks-per-core=1 #SBATCH --ntasks-per-node=12 #SBATCH --cpus-per-task=1 #SBATCH --partition=normal #SBATCH --constraint=gpu&startx #SBATCH --hint=nomultithread export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK export CRAY_CUDA_MPS=1 # load virtual environment source ${HOME}/robovenv/bin/activate export DISPLAY=:0 srun python3 -u train.py ... ``` The number of parallel workers will equal the number of nodes times the number of CPUs per node (32 x 12 = 384 in the template above). ## 🔗 Citing AngoraPy If you use AngoraPy for your research, please cite us as follows Weidler, T., & Senden, M. (2020). AngoraPy: Anthropomorphic Goal-Oriented Robotic Control for Neuroscientific Modeling [Computer software] Or using bibtex @software{angorapy2020, author = {Weidler, Tonio and Senden, Mario}, month = {3}, title = {{AngoraPy: Anthropomorphic Goal-Oriented Robotic Control for Neuroscientific Modeling}}, year = {2020} }


نیازمندی

مقدار نام
==1.23.0 numpy
- Box2D
==0.24.0 gym
- mujoco
==2.10.0 tensorflow
==3.1.3 mpi4py
- tqdm
- simplejson
- psutil
- scipy
- sklearn
- argcomplete
- matplotlib
==0.24.1 scikit-learn
==1.4.4 pandas
- nvidia-ml-py3
- seaborn
- distance
==3.19.0 protobuf
- panda-gym
==2.0.1 itsdangerous
==2.0.3 werkzeug
~=1.1.2 Flask
==3.0.0 Jinja2
- bokeh
- flask-jsglue


نحوه نصب


نصب پکیج whl angorapy-0.8.1:

    pip install angorapy-0.8.1.whl


نصب پکیج tar.gz angorapy-0.8.1:

    pip install angorapy-0.8.1.tar.gz