معرفی شرکت ها


ande-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

For Clustering, ploting and Perfomence matrics
ویژگی مقدار
سیستم عامل -
نام فایل ande-0.0.1
نام ande
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Chandrima Biswas
ایمیل نویسنده cbiswascse26@gmail.com
آدرس صفحه اصلی https://github.com/jamescalam/aesthetic_ascii
آدرس اینترنتی https://pypi.org/project/ande/
مجوز -
<div id="top"></div> <!-- PROJECT LOGO --> <br /> <div align="center"> <h3 align="center">Efficient Method for Optimizing Anomaly Detection with Clustering Algorithms<br> and for Unifiying in a Package</h3> <p> To create a common platform for anomaly detection process with some popular clustering algorithms to be an easy solution for data analysis to verify the process data with other clustering algorithms. </p> </div> <!-- TABLE OF CONTENTS --> <details> <summary>Table of Contents</summary> <ol> <li> <a href="#about-the-project">About The Project</a> <ul> <li><a href="#built-with">Built With</a></li> </ul> </li> <li> <a href="#getting-started">Getting Started</a> <ul> <li><a href="#prerequisites">Prerequisites</a></li> <li><a href="#installation">Installation</a></li> </ul> </li> <li><a href="#usage">Usage</a></li> <li><a href="#roadmap">Roadmap</a></li> <li><a href="#contributing">Contributing</a></li> <li><a href="#license">License</a></li> <li><a href="#contact">Contact</a></li> <li><a href="#acknowledgments">Acknowledgments</a></li> </ol> </details> <!-- ABOUT THE PROJECT --> ## About The Project <p> The world of data is growing very fast, and it is a new challenge for data analysis to develop new methods to handle this massive amount of data. A large number of data have many hidden factors that need to be identified and used for different algorithms. Clustering is one of the significant parts of data mining. The term comes from the idea of classifying unsupervised data. Now-a-days a lot of algorithms are implemented. Besides that, all those algorithms have some limitations, creating an opportunity to innovate new <br>algorithms for clustering. The clustering process can be separated in six different ways: partitioning, hierarchical, density, gridmodel, and constraint-based models. The aim of the package is to implement various types of clustering algorithms and helps to determine which one is more accurate on detecting impure data from a large data set. To create a common platform for Some popluar algorithms for anomaly detection are implemented and converged all of them into a package(AnDe). The algorithms which are implemented and combined into the package are: K-means, DBSCAN, HDBSCAN, Isolation Forest, Local Outlier Factor and Agglomerative Hierarchical Clustering. The package reduce the consumption of time by compressing implementation hurdles of each algorithms. The package is also makes the anomaly detection procedure more robust by visualizing in a more precise way along with visualization of comparison in performance(accuracy, runtime and memory consumption) of those algorithm <br>implemented. ### Built With For using this package, some popular packages are need to be configured in the working environment. * [Numpy](https://numpy.org/) * [Panda](https://pandas.pydata.org/) * [Matplotlib](https://matplotlib.org/) * [Time](https://docs.python.org/3/library/time.html) * [os](https://docs.python.org/3/library/os.html) * [Sklearn](https://scikit-learn.org/stable/) * [Hdbscan](https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html) * [Tracemalloc](https://docs.python.domainunion.de/3/library/tracemalloc.html) <p align="right">(<a href="#top">back to top</a>)</p> <!-- GETTING STARTED --> ## Getting Started This is an example of how you set up thie pacage and use in you script. ### Prerequisites At first, need install the package in your working environment for using this package. ```sh pip install python=3.8 ``` ```sh pip install numpy ``` ```sh pip install pandas ``` ```sh pip install matplotlib ``` ```sh pip install time ``` ```sh pip install os ``` ```sh pip install sklearn ``` ```sh pip install Hdbscan ``` ```sh pip install Tracemalloc ``` ### Installation 1. Download the package from (https://github.com/cbiswascse/AUnifiedPackageForAnomalyDetection) 2. Install the package in you environment. ```sh pip install cb-cluster ``` 3. Import the pacage in your script. ```sh from EMOADCAUP import Cluster ``` <p align="right">(<a href="#top">back to top</a>)</p> <!-- USAGE EXAMPLES --> ## Usage 1. Call the cluster function. ```sh from ande import ande ande.ClusterView() ``` 2. Input the Location of CSV file. ```sh Please, Input the Location of CSV: ``` 3. Select yes(y) If you have Catagorical data in your dataset. ```sh Do you want to include Catagorical data [y/n]: ``` 4. Select yes(y) If you want to scaling your dataset with MinMaxScaler. ```sh Scaling data with MinMaxScaler [y/n]: ``` 5. Available Clusering Algorithm Kmeans Dbscan Isolation Forest Local Factor Outlier Hdbscan Agglomerative ```sh Choose your Algorithm: ``` 6. <b>Kmeans Clusering: </b> Number of Cluster ```sh How many clusters you want?: ``` 7. Select one of Average Method for Performance Metrics ```sh weighted,micro,macro,binary ``` 8. <b>Dbscan: </b> Input a Epsilon value ```sh epsilon in Decimal: ``` 9. Input a Min Samples value ```sh Min Samples In Integer: ``` 10. Select one of Average Method for Performance Metrics ```sh weighted,micro,macro,binary ``` 11.<b>Hdbscan: </b> Minimum size of cluster ```sh Minimun size of clusters you want?: ``` 12. Select one of Average Method for Performance Metrics ```sh weighted,micro,macro,binary ``` 13.<b>Isolation Forest: </b> Contamination value ```sh Contamination value between [0,0.5]: ``` 14. Select one of Average Method for Performance Metrics ```sh weighted,micro,macro,binary ``` 15. <b>Local Outlier Factor: </b> Contamination value ```sh Contamination value between [0,0.5]: ``` 16. Select one of Average Method for Performance Metrics ```sh weighted,micro,macro,binary ``` 17.<b>Agglomerative: </b> Number of Cluster ```sh How many clusters you want?: ``` 18.Select one of Average Method for Performance Metrics ```sh weighted,micro,macro,binary ``` <p align="right">(<a href="#top">back to top</a>)</p> <!-- LICENSE --> ## License Distributed under the MIT License. See `LICENSE.txt` for more information. <p align="right">(<a href="#top">back to top</a>)</p> <!-- CONTACT --> ## Contact Chandrima Biswas - cbiswascse26@gmail.com Project Link: [https://github.com/cbiswascse/AUnifiedPackageForAnomalyDetection](https://github.com/cbiswascse/AUnifiedPackageForAnomalyDetection) <p align="right">(<a href="#top">back to top</a>)</p> <!-- ACKNOWLEDGMENTS --> ## Acknowledgments <p> I would like to convey my heartfelt appreciation to my supervisor Prof.Dr. Doina Logofatu,for all her feedback, guidance, and evaluations during the work. Without her unique ideas, as well as her unwavering support and encouragement, I would never have been able to complete this project. In spite of her hectic schedule, she listened to my problem and gavethe appropriate advice. <br>Furthermore, I express my very profound gratitude Prof. Dr. Peter Nauth for being the second supervisor of this work.</p>


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl ande-0.0.1:

    pip install ande-0.0.1.whl


نصب پکیج tar.gz ande-0.0.1:

    pip install ande-0.0.1.tar.gz