معرفی شرکت ها


anatools-3.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tools for development with the Rendered.ai Platform.
ویژگی مقدار
سیستم عامل -
نام فایل anatools-3.0.0
نام anatools
نسخه کتابخانه 3.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rendered AI, Inc
ایمیل نویسنده support@rendered.ai
آدرس صفحه اصلی https://rendered.ai
آدرس اینترنتی https://pypi.org/project/anatools/
مجوز -
## Rendered.ai's SDK: anatools `anatools` is an SDK for connecting to the Rendered.ai Platform. With `anatools` you can generate and access synthetic datasets, and much more! ```python >>> import anatools >>> ana = anatools.client() 'Enter your credentials for the Rendered.ai Platform.' 'email:' example@rendered.ai 'password:' *************** >>> channels = ana.get_channels() >>> graphs = ana.get_staged_graphs() >>> datasets = ana.get_datasets() ``` <br /> ## Install the `anatools` Package #### (Optional) Create a new Conda Environment 1. Install conda for your operating system: https://www.anaconda.com/products/individual. 2. Create a new conda environment and activate it. 3. Install anatools from the Python Package Index. ```sh $ conda create -n renderedai python=3.7 $ conda activate renderedai ``` #### Install AnaTools to the Python Environment 1. Install AnaTools from the Python Package Index. ```sh $ pip install anatools ``` #### Dependencies The anatools package requires python 3.6 or higher and has dependencies on the following packages: | Package | Description | |-|-| | docker | A python library for the Docker Engine API. | | numpy | A python library used for array-based processing. | | pillow | A fork of the Python Image Library. | | pyyaml | A python YAML parser and emitter. | | requests | A simple HTTP python library. | If you have any questions or comments, contact Rendered.AI at info@rendered.ai. <br /> ## Quickstart Guide #### What is the Rendered.ai Platform? The Rendered.ai Platform is a synthetic dataset generation tool where graphs describe what and how synthetic datasets are generated. | Terms | Definitions | |-|-| | workspace | A workspace is a collection of data used for a particular use-case, for example workspaces can be used to organize data for different projects. | dataset | A dataset is a collection of data, for many use-cases these are images with text-based annotation files. | | graph | A graph is defined by nodes and links, it describes the what and the how a dataset is generated. | | node | A node can be described as an executable block of code, it has inputs and runs some algorithm to generate outputs. | | link | A link is used to transfer data from the output of one node, to the input of other nodes. | | channel | A channel is a collection of nodes, it is used to limit the scope of what is possible to generate in a dataset (like content from a tv channel). | #### How do you use the SDK? The Rendered.ai Platform creates synthetic datasets by processing a graph, so we will need to create the client to connect to the Platform API, create a graph, then create a dataset. 1. Execute the python command line, create a client and login to Rendered.ai. In this example we are instantiating a client with no workspace or environment variables, so it is setting our default workspace. To access the tool, you will need to use your email and password for https://deckard.rendered.ai. ```python >>> import anatools >>> ana = anatools.client() 'Enter your credentials for the Rendered.ai Platform.' 'email:' example@rendered.ai 'password:' *************** ``` 2. Create a graph file called `graph.yml` with the code below. We are defining a simplistic graph for this example with multiple children's toys dropped into a container. While `YAML` files are used in channel development and for this example, the Platform SDK and API only support `JSON`. Ensure that the `YAML` file is valid in order for the SDK to convert `YAML` to `JSON` for you. Otherwise, provide a graph in `JSON` format. ```yaml version: 2 nodes: Rubik's Cube: nodeClass: "Rubik's Cube" Mix Cube: nodeClass: Mix Cube Bubbles: nodeClass: Bubbles Yoyo: nodeClass: Yo-yo Skateboard: nodeClass: Skateboard MouldingClay: nodeClass: Playdough ColorToys: nodeClass: ColorVariation values: {Color: "<random>"} links: Generators: - {sourceNode: Bubbles, outputPort: Bubbles Bottle Generator} - {sourceNode: Yoyo, outputPort: Yoyo Generator} - {sourceNode: MouldingClay, outputPort: Play Dough Generator} - {sourceNode: Skateboard, outputPort: Skateboard Generator} ObjectPlacement: nodeClass: RandomPlacement values: {Number of Objects: 20} links: Object Generators: - {sourceNode: ColorToys, outputPort: Generator} - {sourceNode: "Rubik's Cube", outputPort: "Rubik's Cube Generator"} - {sourceNode: Mix Cube, outputPort: Mixed Cube Generator} Container: nodeClass: Container values: {Container Type: "Light Wooden Box"} Floor: nodeClass: Floor values: {Floor Type: "Granite"} DropObjects: nodeClass: DropObjectsNode links: Objects: - {sourceNode: ObjectPlacement, outputPort: Objects} Container Generator: - {sourceNode: Container, outputPort: Container Generator} Floor Generator: - {sourceNode: Floor, outputPort: Floor Generator} Render: nodeClass: RenderNode links: Objects of Interest: - {sourceNode: DropObjects, outputPort: Objects of Interest} ``` 3. Create a graph using the client. To create a new graph, we load the graph defined above into a python dictionary using the yaml python package. Then we create a graph using the client. This graph is being named `testgraph` and is using the `example` channel. We will first find the `channelId` matching to the `example` channel and use that in the `create_staged_graph` call. The client will return a `graphId` so we can reference this graph later. ```python >>> import yaml >>> with open('graph.yml') as graphfile: >>> graph = yaml.safe_load(graphfile) >>> channels = ana.get_channels() >>> channelId = list(filter(lambda channel: channel['name'] == 'example', channels))[0]['channelId'] >>> graphId = ana.create_staged_graph(name='testgraph', channelId=channelId, graph=graph) >>> print(graphId) '010f9362-daa8-4c10-a3e8-1e81e0f2e4f4' ``` 4. Create a dataset using the client. Using the `graphId`, we can create a new job to generate a dataset. The job takes some time to run. The client will return a `datasetId` that can be used for reference later. You can use this `datasetId` to check the job status and, once the job is complete, download the dataset. You have now generated Synthetic Data! ``` python >>> datasetId = ana.create_dataset(name='testdataset',graphId=graphId,interpretations='10',priority='1',seed='1',description='A simple dataset with cubes in a container.') >>> datasetId 'ce66e81c-23a6-11eb-adc1-0242ac120002' ```


نیازمندی

مقدار نام
- docker
- numpy
- pillow
- pyyaml
- requests


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl anatools-3.0.0:

    pip install anatools-3.0.0.whl


نصب پکیج tar.gz anatools-3.0.0:

    pip install anatools-3.0.0.tar.gz