معرفی شرکت ها


amygda-1.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Measure the mycobacterial growth in a 96-well plate, thereby determining the MICs
ویژگی مقدار
سیستم عامل -
نام فایل amygda-1.3.1
نام amygda
نسخه کتابخانه 1.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Philip W Fowler
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/fowlerlab/amygda
آدرس اینترنتی https://pypi.org/project/amygda/
مجوز University of Oxford License, see LICENSE
# Automated Mycobacterial Growth Detection Algorithm (AMyGDA) This is a `python3` module that takes a photograph of a 96 well plate and assesses each well for the presence of bacterial growth (here *Mycobacterial tuberculosis*). Since each well contains a different concentration of a different antibiotic, the minimum inhibitory concentration, as used in clinical microbiology, can be determined. A [paper](https://doi.org/10.1099/mic.0.000733) describing the software and demonstrating its reproducibility and accuracy is available from Microbiology. The development of this software was funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) to aid the [CRyPTIC project](http://www.crypticproject.org). **Philip W Fowler** philip.fowler@ndm.ox.ac.uk 27 January 2020 ## Citing Please cite Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of Mycobacterium tuberculosis Philip W Fowler, Ana Luiza Gibertoni Cruz, Sarah J Hoosdally, Lisa Jarrett, Emanuele Borroni, Matteo Chiacchiaretta, Priti Rathod, Sarah Lehmann, Nikolay Molodtsov, Clara Grazian, Timothy M Walker, Esther Robinson, Harald Hoffmann, Timothy EA Peto, Daniela Maria M. Cirillo, E Grace Smith, Derrick W Crook Microbiology (2018) 164:1522-1530 doi:10.1099/mic.0.000733 ## Installation This is python3; python2 will not work. Installation is straightforward using the included `setup.py` script. First clone the repository (or download it directly from this GitHub page) $ git clone https://github.com/philipwfowler/amygda.git This will download the repository, creating a folder on your computer called `amygda/`. If you only wish to install the package in your `$HOME` directory (or don't have sudo access) issue the `--user` flag $ cd amygda/ $ python setup.py install --user Alternatively, to install system-wide $ sudo python setup.py install The setup.py will automatically looks for the required following python packages and, if they are not present, will install them, or if they are an old version, will update them. The information below is only included in case this process does not work. The prerequisites are - [`numpy`](http://www.numpy.org) and [`scipy`](https://www.scipy.org). Your python installation often includes numpy and scipy. To check, issue the following in a terminal $ python -c "import numpy" $ python -c "import scipy" If you see an error, indicating `numpy` and/or `scipy` is not installed, please install the scipy stack by following [these instructions](https://www.scipy.org/install.html). -[`matplotlib`](https://matplotlib.org). If your python installation includes numpy and scipy, there is a good chance it also includes matplotlib. Again to check $ python -c "import matplotlib" You can find installation instructions [here](https://matplotlib.org/2.2.2/users/installing.html). - [`opencv-python`](https://pypi.python.org/pypi/opencv-python). This can be installed using standard python tools, such as pip $ pip install opencv-python `AMyGDA` was developed and tested using version 3.4.0 of `OpenCV`. If you do not have `sudo` access on your machine you can install this (and any other python module) in your `$HOME` directory using the following command $ pip install opencv-python --user - [`datreant`](http://datreant.readthedocs.io/en/latest/). This provides a neat way of storing and discovering metadata for each image using the native filesystem. It is not essential for the operation of `AMyGDA`, but the code would need re-factoring to remove this dependency. Again it can be installed using pip $ pip install datreant Note that `datreant` works best if each image is containing within its own folder. `datreant` automatically stores all metadata associated with each image within two `JSON` files in a hidden `.datreant` folder in the same location as the input file. ## Tutorial The code is structured as a python module; all files for which can be found in the `amygda/` subfolder. $ ls LICENCE.md amygda/ setup.py README.md examples/ (You may see other folders like `build/` if you are run the `setup.py` script. To run the tutorial move into the `examples/` sub-folder. $ cd examples/ $ ls analyse-plate-with-amygda.py plate-configuration/ sample-images/ `analyse-plate-with-amygda.py` is a simple python file showing how the module can be used to analyse a single image. The fifteen images shown in Figure S1 in the Supplement of the accompanying paper (see above) are provided so you can reconstruct Figures S2, S3, S4 & S12. The images are organised as follows $ ls sample-images/ 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 $ ls sample-images/01/ image-01-raw.png To process and analyse a single image using the default settings is simply $ analyse-plate-with-amygda.py --image sample-images/01/image-01-raw.png And should take no more than 10 seconds. No output is written to the terminal, instead you will find a series of new files have been written in the `samples-images/01` folder. $ ls -a sample-images/01/ .datreant/ image-01-arrays.npz image-01-filtered.png image-01-mics.txt image-01-processed.png image-01-raw.png * The hidden `.datreant/` folder contains two `JSON` files. `categories.json` contains all the MICs and other metadata about the plate and both can be automatically discovered and read using the `datreant` module to make systematic analyses simpler. * `image-01-mics.txt` contains the same information as the `JSON` file but in a simpler format that is easier for humans to read. * `image-01-arrays.npz` contains a series of `numpy` arrays that specify e.g. the percentage growth in each well * `image-01-raw.png` is the original image of the plate. * `image-01-msf.jpg` is a JPEG of the plate following mean shift filtering * `image-01-clahe.jpg` is a JPEG of the plate following mean shift filtering and then a Contrast Limited Adaptive Histogram Equalization filter to improve contrast and equalise the illumination across the plate. * `image-01-final.jpg` is a JPEG of the plate following both the above filtering operations and a histogram stretch to ensure uniform brightness. * `image-01-growth.png` adds some annotation; specifically the locations of the wells are drawn, each well is labelled with the name and concentration of drug and wells which AMyGDA has classified as containing bacterial growth are highlighted with a coloured circle. To see the other options available for the `analyse-plate-with-amygda.py` python script $ analyse-plate-with-amygda.py --help usage: analyse-plate-with-amygda.py [-h] [--image IMAGE] [--growth_pixel_threshold GROWTH_PIXEL_THRESHOLD] [--growth_percentage GROWTH_PERCENTAGE] [--measured_region MEASURED_REGION] [--sensitivity SENSITIVITY] [--file_ending FILE_ENDING] optional arguments: -h, --help show this help message and exit --image IMAGE the path to the image --growth_pixel_threshold GROWTH_PIXEL_THRESHOLD the pixel threshold, below which a pixel is considered to be growth (0-255, default=130) --growth_percentage GROWTH_PERCENTAGE if the central measured region in a well has more than this percentage of pixels labelled as growing, then the well is classified as growth (default=2). --measured_region MEASURED_REGION the radius of the central measured circle, as a decimal proportion of the whole well (default=0.5). --sensitivity SENSITIVITY if the average growth in the control wells is more than (sensitivity x growth_percentage), then consider growth down to this sensitivity (default=4) --file_ending FILE_ENDING the ending of the input file that is stripped. Default is '-raw' To analyse all plates, you can either use a simple bash loop $ for i in 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15; do analyse-plate-with-amygda.py --image sample-images/$i/image-$i-raw.png done; Alternatively if you have [GNU parallel](https://www.gnu.org/software/parallel/) installed you can use all the cores on your machine to speed up the process. $ find sample-images/ -name '*raw.png' | parallel --bar analyse-plate-with-amygda.py --image {} To delete all the output files, thereby returning sample-images/ to its clean state, a bash script is provided. Use with caution! $ cd samples-images/ $ ls 01/ image-01-mics.txt image-01-arrays.npz image-01-clahe.jpg image-01-filtered.jpg image-01-raw.png image-01-growth.jpg image-01-msf.jpg $ bash remove-output-images.sh $ ls 01/ image-01-raw.png ## Licence The software is available subject to the terms of the attached academic-use licence. ## Adapting for different plate designs AMyGDA is written to be agnostic to the particular design of plate, or even the number of wells on each plate. The concentration (or dilution) of drug in each well is defined by a series of plaintext files in config/ For example the drugs on the UKMYC5 plate is defined within the config/UKMYC5-drug-matrix.txt file and looks like. BDQ,KAN,KAN,KAN,KAN,KAN,ETH,ETH,ETH,ETH,ETH,ETH BDQ,AMI,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,RFB,PAS BDQ,AMI,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,RFB,PAS BDQ,AMI,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,RFB,PAS BDQ,AMI,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,RFB,PAS BDQ,AMI,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,RFB,PAS BDQ,AMI,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,RFB,PAS BDQ,EMB,EMB,INH,LEV,MXF,DLM,LZD,CFZ,RIF,POS,POS Adding a new plate design is simply a matter of creating new files specifying the drug, concentration and dilution of each well. Note that changing the *number* of wells at present also involves specifying the well_dimensions when creating a PlateMeasurement object. Currently this defaults to (8,12) i.e. a 96-well plate in landscape orientation. As an example, the configuration files for the UKMYC6 plate, which is the successor to the UKMYC5 plate, are included although all the provided examples are of UKMYC5 plates.


نیازمندی

مقدار نام
>=1.13 numpy
>=1.0.2 datreant
>=3.4 opencv-python
>=1.1.0 scipy
>=2.2.2 matplotlib
>=7.1 pytest
- pytest-cov


نحوه نصب


نصب پکیج whl amygda-1.3.1:

    pip install amygda-1.3.1.whl


نصب پکیج tar.gz amygda-1.3.1:

    pip install amygda-1.3.1.tar.gz